Selected Problems

From the Set Involving Making the Net Force Zero

- 1. A force $\vec{F_1}$ of 10 N acts at 30° to the positive x-axis. Another force $\vec{F_2}$ of 5 N acts along the negative y-axis. What is the magnitude and direction of a third force $\vec{F_3}$ required to make the net force zero?
- 2. A force $\vec{F_1}$ of 15 N acts at 120° to the positive x-axis. Another force $\vec{F_2}$ of 10 N acts at 210° to the positive x-axis. What is the magnitude and direction of the force $\vec{F_3}$ needed to make the net force zero?
- 3. A force $\vec{F_1}$ of 40 N acts at 250° to the positive x-axis. Another force $\vec{F_2}$ of 35 N acts at 325° to the positive x-axis. Determine the force $\vec{F_3}$ required to make the net force zero.

From the Set Involving Resolving Vectors

- 4. A vector \vec{A} has a magnitude of 5 units and makes an angle of 30° with the positive x-axis. Resolve the vector into its x and y components.
- 5. A vector \vec{D} has a magnitude of 12 units and is oriented at 120° to the positive x-axis. Resolve this vector into its x and y components.
- 6. A displacement vector \vec{H} has a magnitude of 15 units and is directed 37° below the negative x-axis. Calculate the x and y components of this vector.

Additional Questions

- 1. Obtain the condition to be satisfied by the direction and magnitude of force \vec{F}_3 such that the net force acting along y=x is zero when a force \vec{F}_1 making an angle 30° with the x-axis and a force \vec{F}_2 making an angle 210° with the x-axis are acting on a point.
- 2. Determine the conditions for the direction and magnitude of a third force \vec{F}_3 such that the net force is zero along y=-x, given a force \vec{F}_1 acting at 45° to the x-axis and another force \vec{F}_2 acting at 135° to the x-axis.
- 3. Find the necessary conditions for the direction and magnitude of force $\vec{F_3}$ such that the resultant force along the line y=2x is zero. The forces $\vec{F_1}$ and $\vec{F_2}$ act at 60° and 240° to the x-axis, respectively.