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Chapter 1

Central Force

1.1 Central Force
A central force is a force that acts along the line joining a particle and a fixed point,
typically the origin. The magnitude of the force depends only on the radial distance r
between the particle and the center of force, but not on the direction. Mathematically,
it is expressed as:

F = F (r)r̂,

where: - r̂ is the unit vector in the radial direction, - F (r) is the magnitude of the force,
which depends only on r.

1.1.1 Characteristics of a Central Force
• Radial Nature: The force acts along or opposite to r, and its direction is either

attractive (F (r) < 0) or repulsive (F (r) > 0).

• Conservative Force: Central forces are usually conservative, meaning they can
be derived from a scalar potential V (r):

F = −∇V (r) = −dV

dr
r̂.

• Angular Momentum Conservation: Since the force acts radially, there is no
torque about the center. This ensures that angular momentum L is conserved:

dL
dt

= 0.

• Motion in a Plane: Conservation of angular momentum confines the motion to
a plane perpendicular to L, reducing the problem to two dimensions.

1.1.2 Examples of Central Forces
• Gravitational Force:

F = −Gm1m2

r2 r̂,

where G is the gravitational constant.

1



2 CHAPTER 1. CENTRAL FORCE

• Electrostatic Force:
F = kq1q2

r2 r̂,

where k is Coulomb’s constant.

• Spring Force (Radial Hooke’s Law):

F = −krr̂,

where k is the spring constant.

1.1.3 Applications
• Planetary Motion: Central forces govern planetary orbits, as described by New-

ton’s law of gravitation and Kepler’s laws.

• Atomic Models: The electrostatic force between electrons and nuclei in atoms is
a central force.

• Oscillatory Systems: Radial spring forces model harmonic oscillators in various
fields of physics.

In summary, central forces simplify the analysis of motion by reducing the dynamics
to two dimensions and conserving angular momentum. They are fundamental to under-
standing natural phenomena ranging from celestial mechanics to molecular dynamics.

1.2 Derivation of r1 and r2 in terms of R, m1, m2, and
r

1.2.1 The diagram
This document provides a detailed step-by-step derivation of r1 and r2 in terms of the
center of mass R, the masses m1 and m2, and the relative position vector r = r2 − r1.

1.2.2 Step 1: Definition of Center of Mass
The center of mass (COM) position vector R is defined as:

R = m1r1 + m2r2

m1 + m2
.

This represents the weighted average of the positions of the two masses.

1.2.3 Step 2: Define Relative Position Vector
The relative position vector r is defined as:

r = r2 − r1.

Rearranging, we can write:
r2 = r + r1.

This relationship will be used to substitute r2 in the center of mass equation.
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1.2. DERIVATION OF r1 AND r2 IN TERMS OF R, m1, m2, AND r 3

Figure 1.1: Illustration of the vectors r1, r2, r, and R.

1.2.4 Step 3: Derive r1

1. Substitute r2 = r + r1 into the COM equation:

R = m1r1 + m2(r + r1)
m1 + m2

.

2. Expand the numerator:
R = m1r1 + m2r + m2r1

m1 + m2
.

3. Combine terms involving r1:

R = (m1 + m2)r1 + m2r
m1 + m2

.

4. Eliminate the denominator:

(m1 + m2)R = (m1 + m2)r1 + m2r.

5. Isolate r1:
r1 = R − m2

m1 + m2
r.

1.2.5 Step 4: Derive r2

1. Substitute r1 = r2 − r into the COM equation:

R = m1(r2 − r) + m2r2

m1 + m2
.
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4 CHAPTER 1. CENTRAL FORCE

2. Expand the numerator:
R = m1r2 − m1r + m2r2

m1 + m2
.

3. Combine terms involving r2:

R = (m1 + m2)r2 − m1r
m1 + m2

.

4. Eliminate the denominator:

(m1 + m2)R = (m1 + m2)r2 − m1r.

5. Isolate r2:
r2 = R + m1

m1 + m2
r.

1.2.6 Final Results
1. Position of r1:

r1 = R − m2

m1 + m2
r.

2. Position of r2:
r2 = R + m1

m1 + m2
r.

1.2.7 Symmetry Between r1 and r2

The expressions for r1 and r2 exhibit symmetry:

r1 = R − m2

m1 + m2
r, r2 = R + m1

m1 + m2
r.

This symmetry reflects the balance of the system about the center of mass.

1.3 Reduction of Two-Body Problem to One-Body
Problem

This document derives the kinetic energy (KE) and potential energy (V) for a two-body
system and reduces the two-body problem to an equivalent one-body problem.

—

1.3.1 Step 1: Kinetic Energy and Potential Energy in Terms of
r1 and r2

The total kinetic energy of the two-body system is given by:

T = 1
2m1ṙ2

1 + 1
2m2ṙ2

2.

The potential energy depends only on the relative position vector r = r2 − r1:

V = V (r1, r2) = V (r).

—
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1.3. REDUCTION OF TWO-BODY PROBLEM TO ONE-BODY PROBLEM 5

1.3.2 Step 2: Rewrite KE and V in Terms of r, R, m1, and m2

1. The center of mass R is defined as:

R = m1r1 + m2r2

m1 + m2
.

The relative position vector is:
r = r2 − r1.

2. Using these, the positions r1 and r2 can be written as:

r1 = R − m2

m1 + m2
r, r2 = R + m1

m1 + m2
r.

3. The velocities ṙ1 and ṙ2 become:

ṙ1 = Ṙ − m2

m1 + m2
ṙ, ṙ2 = Ṙ + m1

m1 + m2
ṙ.

4. Substitute into the kinetic energy:

T = 1
2m1

(
Ṙ − m2

m1 + m2
ṙ
)2

+ 1
2m2

(
Ṙ + m1

m1 + m2
ṙ
)2

.

5. Expand the squares and simplify using m1 + m2:

T = 1
2(m1 + m2)Ṙ2 + 1

2µṙ2,

where µ is the reduced mass:
µ = m1m2

m1 + m2
.

6. The potential energy becomes:

V = V (r).

—

1.3.3 Step 3: Lagrangian for the System
The Lagrangian L is:

L = T − V.

Substituting the expressions for T and V :

L = 1
2(m1 + m2)Ṙ2 + 1

2µṙ2 − V (r).

—

1.3.4 Step 4: R as a Cyclic Coordinate
1. The center of mass R appears only in the kinetic energy term 1

2(m1 + m2)Ṙ2 and
does not appear in the potential energy V . 2. Therefore, R is a cyclic coordinate, and
its conjugate momentum:

P = (m1 + m2)Ṙ
is conserved.

—

Content by Dr. Jose Mathew, The Cochin College



6 CHAPTER 1. CENTRAL FORCE

1.3.5 Step 5: Reduced Lagrangian in Terms of µ and r
After separating the motion of the center of mass, the reduced Lagrangian describes the
relative motion:

Lreduced = 1
2µṙ2 − V (r).

This Lagrangian describes a single particle of mass µ moving under the influence of
the potential V (r).

—

1.3.6 Conclusion: Reduction of Two-Body Problem to One-
Body Problem

1. The original two-body problem, described by the positions r1 and r2, has been reduced
to two independent problems: - Motion of the center of mass R, which is uniform if no
external forces act. - Relative motion of a single particle of mass µ under the potential
V (r).

2. This simplification is achieved by introducing the center of mass and relative
position coordinates, effectively reducing the degrees of freedom from two bodies to one
equivalent body.

1.4 Deriving the Euler-Lagrange Equation for the
Reduced Lagrangian

Let’s explore the process of deriving the Euler-Lagrange equation for the reduced La-
grangian in the context of a two-body system. To make it engaging, imagine we’re
discussing this as part of a one-on-one mentorship session, walking through the steps
interactively.

—

1.4.1 Step 1: Expressing the Full Lagrangian
In a two-body system, the relative position vector r is written as:

r = rr̂,

where: - r: radial distance, - r̂: unit vector in the radial direction.
Using spherical coordinates (r, θ, ϕ), the Lagrangian becomes:

L = 1
2µ

(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
− V (r),

where: - µ = m1m2
m1+m2

is the reduced mass, - V (r) is the potential energy depending only
on r, - ṙ, θ̇, ϕ̇ are time derivatives of the spherical coordinates.

—

1.4.2 Step 2: Motion Constrained to a Plane
A central force problem inherently has rotational symmetry about the center of mass.
Here’s why the motion of the two-body system always occurs in a plane:
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1.4. DERIVING THE EULER-LAGRANGE EQUATION FOR THE REDUCED
LAGRANGIAN 7

1.4.2.1 Step 2: Angular Momentum

In a central force problem, the motion is confined to a plane due to the conservation of
angular momentum. Let us derive this step by step:

1. Central Force Definition:
The central force is given as:

F = F (r)r̂,

where F (r) depends only on the radial distance r, and r̂ is the unit vector in the radial
direction.

2. Torque is Zero:
The torque τ is:

τ = r × F.

Substituting F = F (r)r̂:
τ = r × (F (r)r̂) = 0,

because r and r̂ are collinear. Hence, there is no torque.
3. Angular Momentum Conservation:

The angular momentum L of the system is:

L = r × µṙ.

Taking the time derivative:
dL
dt

= d

dt
(r × µṙ) .

4. Product Rule for the Derivative:
Using the product rule:

dL
dt

= ṙ × µṙ + r × µr̈.

- The first term is ṙ × µṙ = 0, since the cross product of a vector with itself is zero. -
The second term is:

r × µr̈,

where r̈ = F
µ

= F (r)r̂. Substituting:

r × µr̈ = r × (F (r)r̂) = 0,

because r and r̂ are collinear.
5. Conclusion:

Since both terms are zero, the time derivative of angular momentum is zero:

dL
dt

= 0.

Hence, angular momentum L is conserved, and the motion is confined to a plane perpen-
dicular to L.

6. Direction of Angular Momentum: The vector L is perpendicular to the plane
formed by r and ṙ. This implies the motion lies entirely within a fixed plane perpendicular
to L.

7. Simplification: By choosing the plane of motion to coincide with the equatorial
plane θ = π/2, we simplify the dynamics. The coordinate ϕ remains to describe angular
motion within this plane.
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8 CHAPTER 1. CENTRAL FORCE

The reduced Lagrangian now becomes:

L = 1
2µ

(
ṙ2 + r2ϕ̇2

)
− V (r).

Here, ϕ is a cyclic coordinate, meaning it does not explicitly appear in the Lagrangian
but contributes through the conserved angular momentum.

—

1.4.3 Step 3: Euler-Lagrange Equations
Radial Motion The Euler-Lagrange equation for r is:

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0.

1. Compute ∂L
∂ṙ

:
∂L

∂ṙ
= µṙ.

2. Compute the time derivative of ∂L
∂ṙ

:

d

dt

(
∂L

∂ṙ

)
= µr̈.

3. Compute ∂L
∂r

: From the Lagrangian:

L = 1
2µ

(
ṙ2 + r2ϕ̇2

)
− V (r),

the partial derivative with respect to r is:
∂L

∂r
= µrϕ̇2 − ∂V

∂r
.

4. Substitute into the Euler-Lagrange Equation:

µr̈ − µrϕ̇2 + ∂V

∂r
= 0.

1.4.4 Angular Motion
see 1.9 The Euler-Lagrange equation for ϕ is:

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0.

Since ϕ is cyclic, ∂L
∂ϕ

= 0, and:

d

dt

(
∂L

∂ϕ̇

)
= 0.

The conserved angular momentum is:

Lz = µr2ϕ̇.

—
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1.5. REVISITING IGNORABLE COORDINATE AND CYCLIC COORDINATE IN
CENTRAL FORCE PROBLEMS 9

1.4.5 Step 4: Effective Potential
Using the conserved angular momentum, the angular term can be absorbed into an ef-
fective potential:

Veff(r) = V (r) + L2
z

2µr2 .

The radial equation becomes:
µr̈ = −∂Veff

∂r
.

—

1.4.6 Centrifugal Potential
The centrifugal potential arises naturally in problems involving central forces when motion
is analyzed in polar or spherical coordinates. It is an effective potential term that accounts
for the angular momentum of the system, reflecting the "apparent force" experienced due
to rotation. Mathematically, it is expressed as:

Vcentrifugal(r) = L2
z

2µr2 ,

where Lz is the conserved angular momentum, µ is the reduced mass, and r is the radial
distance. This term increases sharply as r decreases, creating a barrier that prevents the
particle from collapsing into the central force. The centrifugal potential, combined with
the actual potential V (r), forms the effective potential Veff(r), which governs the radial
motion of the particle. This concept is essential in explaining phenomena such as stable
orbits and equilibrium distances in celestial mechanics and atomic physics.

1.4.7 Conclusion
By leveraging the rotational symmetry of the two-body problem, we constrained the
motion to a single plane. The azimuthal coordinate ϕ remains as a cyclic coordinate,
contributing to the dynamics through the conserved angular momentum. The radial
motion is fully described by an effective potential, simplifying the analysis significantly.
Note, that we have retained ϕ even though ϕ is cyclic. But by pointing out R is cyclic
we had ignored R from the entire calculation. Next section explains why.

1.5 Revisiting ignorable coordinate and cyclic coor-
dinate in Central force problems

1.5.1 Angular Momentum: Cyclic but Not Ignorable Coordi-
nate

This document discusses the distinction between cyclic and ignorable coordinates in the
context of angular momentum in central force problems, as exemplified in Kepler’s prob-
lem.

—
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10 CHAPTER 1. CENTRAL FORCE

1.5.2 Angular Momentum as a Cyclic Coordinate

1. In a central force problem (e.g., gravitational or electrostatic interaction): - The
Lagrangian in spherical coordinates (or polar coordinates in 2D) is given by:

L = 1
2m

(
ṙ2 + r2ϕ̇2

)
− V (r),

where: - r: radial distance, - ϕ: azimuthal angle, - ṙ and ϕ̇: time derivatives of r and ϕ,
respectively.

2. The azimuthal angle ϕ is a cyclic coordinate because it does not explicitly appear
in the Lagrangian. Its conjugate momentum is:

pϕ = ∂L

∂ϕ̇
= mr2ϕ̇,

which corresponds to the angular momentum about the axis of symmetry. Since ϕ is
cyclic, pϕ is conserved:

pϕ = constant.

—

1.5.3 Not an Ignorable Coordinate

While ϕ is cyclic, it is not ignorable because:
1. The conserved angular momentum pϕ influences the radial dynamics through the

effective potential:

Veff(r) = V (r) +
p2

ϕ

2mr2 .

This term modifies the radial equation of motion, linking the angular motion (ϕ) to the
radial motion (r).

2. Ignorable coordinates are typically redundant or do not affect the system’s dynam-
ics. In this case, ϕ is not redundant because its conjugate momentum directly contributes
to the energy and dynamics of the system.

—

1.5.4 Key Distinction: Cyclic vs Ignorable Coordinates

- Cyclic Coordinate: - A coordinate that does not explicitly appear in the Lagrangian.
- Leads to a conserved quantity (e.g., angular momentum).

- Ignorable Coordinate: - A broader term that includes coordinates irrelevant to
the dynamics or omitted due to symmetry or constraints.

- In this problem: - ϕ is cyclic because it is absent from the Lagrangian. - ϕ is
not ignorable because its conserved momentum influences the effective potential and the
system’s radial dynamics.

—
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1.6. SUMMARY 11

1.6 Summary
The azimuthal angle ϕ in a central force problem is a cyclic coordinate, leading to the
conservation of angular momentum. However, it is not an ignorable coordinate because
its conjugate momentum pϕ affects the radial motion through the effective potential.

This distinction highlights the nuanced role of cyclic coordinates in shaping the sys-
tem’s dynamics.

1.7 Differential Equation for r Using the Energy Method
To derive the differential equation for the radial motion r, we use the energy conservation
principle.

1.7.0.1 Step 1: Write the Total Energy

The total energy E of the system is the sum of the kinetic energy T and the effective
potential Veff(r):

E = T + Veff(r),

where: - T is the kinetic energy, - Veff(r) is the effective potential energy.
1. Kinetic Energy:

T = 1
2µṙ2 + 1

2µr2ϕ̇2,

where µ is the reduced mass, ṙ is the radial velocity, and ϕ̇ is the angular velocity.
2. Effective Potential: The effective potential is:

Veff(r) = V (r) + L2
z

2µr2 ,

where Lz = µr2ϕ̇ is the conserved angular momentum.
3. Total Energy: Substituting T and Veff(r) into the total energy:

E = 1
2µṙ2 + 1

2µr2ϕ̇2 + V (r) + L2
z

2µr2 .

Using ϕ̇2 = L2
z

µ2r4 , the total energy simplifies to:

E = 1
2µṙ2 + L2

z

2µr2 + V (r).

Hence:
E = 1

2µṙ2 + Veff(r),

where Veff(r) = V (r) + L2
z

2µr2 .
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12 CHAPTER 1. CENTRAL FORCE

1.7.0.2 Step 2: Solve for ṙ

From the total energy equation:

1
2µṙ2 = E − Veff(r).

Multiply through by 2/µ:
ṙ2 = 2

µ
(E − Veff(r)) .

Taking the square root:

ṙ = ±
√

2
µ

(E − Veff(r)).

1.7.0.3 Step 3: Differential Equation for r

The differential equation for r is:

dr

dt
= ±

√
2
µ

(E − Veff(r)).

This equation relates the radial position r to the total energy E, the effective potential
Veff(r), and the reduced mass µ.

1.8 Orbits in a Central Force Field
The motion of a particle in a central force field is determined by its total energy (E)
and the effective potential (Veff(r)). For a potential V (r) = −k

r
, the effective potential

is:
Veff(r) = −k

r
+ L2

2µr2 ,

where:

• k > 0: strength of the attractive potential,

• L: angular momentum,

• µ: reduced mass.

1.8.1 Possible Scenarios
1.8.1.1 1. E < 0: Bound Orbit

• Nature: The particle’s total energy is less than zero, meaning it is trapped in the
potential well.

• Radial Motion: The particle oscillates between two turning points (rmin and
rmax) where E = Veff(r). At these points, the radial velocity ṙ = 0, and the particle
reverses direction.

• Trajectory: The orbit is elliptical (or circular if E = Veff(rmin)). Conservation of
angular momentum confines the motion to a plane.
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1.8. ORBITS IN A CENTRAL FORCE FIELD 13

1.8.1.2 2. E = 0: Parabolic Trajectory

• Nature: The particle has just enough energy to escape the potential, moving along
a parabolic trajectory.

• Radial Motion: There is a single turning point (rmin) where E = Veff(r). Beyond
rmin, the particle moves outward indefinitely as r → ∞.

• Forbidden Region: If r < rmin, ṙ2 < 0, which is non-physical, indicating that the
particle cannot approach closer than rmin.

• Trajectory: The orbit is parabolic, representing the escape of the particle at
precisely the escape velocity.

1.8.1.3 3. E > 0: Unbound Orbit

• Nature: The particle’s energy exceeds the maximum of Veff(r), allowing it to escape
the central force field.

• Radial Motion: There is one turning point (rmin) where E = Veff(r). The particle
moves outward indefinitely for r > rmin, and r → ∞ as t → ∞.

• Forbidden Region: For r < rmin, ṙ2 < 0, making this region inaccessible.

• Trajectory: The orbit is hyperbolic, indicating an unbound trajectory.

1.8.1.4 4. E = Veff(r): Circular Orbit (Special Case)

• Nature: At this energy, the particle is momentarily at rest in the radial direction
(ṙ = 0).

• Radial Behavior:

– If E = Veff(rmin), the particle remains at the same radius r, resulting in a
circular orbit.

– For any other r, this represents a turning point of the radial motion, where
the particle reverses direction.

1.8.2 Summary of Orbit Types

Energy (E) Orbit Type Key Characteristics
E < 0 Bound (Elliptical) Constrained between rmin and rmax.
E = 0 Parabolic (Escape) Single turning point rmin, particle escapes.
E > 0 Unbound (Hyperbolic) Single turning point rmin, particle escapes infinitely.

E = Veff(r) Circular Orbit (Special Case) Particle remains at a fixed radius r.

1.8.3 Graphical Representation
Below is the graph showing the effective potential Veff(r), the physical potential Vphysical(r),
and the centrifugal potential Vcentrifugal(r). Turning points and orbit types are determined
based on the energy levels E relative to Veff(r).
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Figure 1.2: Effective Potential and Energy Levels in a Central Force Field

1.9 Angular Momentum as a First Integral
Definition of a First Integral:
A first integral is a conserved quantity derived directly from the equations of motion of
a system. It provides a constraint or relationship that holds throughout the motion. A
first integral corresponds to a physical quantity that remains constant due to a symmetry
in the system.

1.9.1 Angular Momentum as a First Integral
Angular momentum L is the first integral of the equations of motion in systems with
rotational symmetry (central forces). Let us derive this step by step.

1. Central Force and Torque:
For a central force F that depends only on the radial distance r:

F = F (r)r̂,

where r̂ is the unit vector in the radial direction.
The torque τ about the origin is:

τ = r × F.

Since r and F are collinear, their cross product is zero:

τ = r × (F (r)r̂) = 0.

No net torque implies that the angular momentum L is conserved:

dL
dt

= τ = 0.
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2. Angular Momentum Equation:
The angular momentum L is defined as:

L = r × p,

where p = mṙ is the linear momentum of the particle. Taking the time derivative:

dL
dt

= d

dt
(r × p) .

Using the product rule:
dL
dt

= ṙ × mṙ + r × mr̈.

- The first term, ṙ × mṙ, is zero because the cross product of a vector with itself is
zero. - The second term is:

r × mr̈,

where r̈ = F
m

= F (r)r̂. Substituting:

r × mr̈ = r × (F (r)r̂) = 0,

because r and r̂ are collinear.
Thus:

dL
dt

= 0,

which confirms that angular momentum is conserved.
3. Angular Momentum as a First Integral of Motion:

The conservation of angular momentum L provides a direct relationship between the
motion and the symmetry of the system: - First Integral of Rotational Motion: Angular
momentum is the integral of the rotational equations of motion. It reflects the fact that no
external torque acts on the system. - Connection to Symmetry: According to Noether’s
theorem, every continuous symmetry corresponds to a conserved quantity. For rotational
symmetry about the origin, the conserved quantity is angular momentum.

1.9.1.1 Implications of Angular Momentum Conservation

- Angular momentum is a constraint that reduces the degrees of freedom in the system.
- In planar motion (e.g., central force problems), the magnitude of L is:

L = |L| = mr2ϕ̇,

where ϕ̇ is the angular velocity. This relationship simplifies the equations of motion by
eliminating the explicit dependence on ϕ.

1.9.2 Conclusion
Angular momentum is a first integral of the equations of motion in systems with central
forces. It reflects the rotational invariance of the system and simplifies the dynamics by
reducing the number of variables needed to describe the motion.
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1.10 Relationship Between Euler-Lagrange Equation
and the Hamiltonian. Total Energy as a first
integral

The connection between the Euler-Lagrange (EL) equation and the Hamiltonian arises
from the conservation laws and the structure of the Lagrangian. Let’s explore this step
by step.

1.10.1 1. Euler-Lagrange Equation Recap
The Euler-Lagrange equation is:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

= 0,

where: - L = T − V is the Lagrangian, - qi are the generalized coordinates, - q̇i are their
time derivatives.

This equation describes how a system evolves dynamically under the influence of
forces.

1.10.2 2. Integrating the EL Equation
The EL equation expresses the balance of forces in terms of generalized coordinates.
However: - Direct integration of the EL equation (with respect to t) gives the
generalized momentum conjugate to qi:

pi = ∂L

∂q̇i

.

- This momentum is conserved if ∂L
∂qi

= 0, i.e., if qi is a cyclic coordinate.

1.10.3 3. Hamiltonian Connection
The Hamiltonian H is not directly obtained by integrating the EL equation but is defined
as:

H =
∑

i

q̇ipi − L,

where: - pi = ∂L
∂q̇i

is the generalized momentum.
If the Lagrangian L does not explicitly depend on time t, the Hamiltonian H becomes

a conserved quantity (the total energy of the system).

1.10.4 4. Energy Conservation from EL Equations
The Hamiltonian emerges naturally from the EL equations if the system is time-invariant:
1. Start with the EL equation for qi:

d

dt

(
∂L

∂q̇i

)
= ∂L

∂qi

.
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2. Multiply through by q̇i and sum over all i:

∑
i

q̇i
d

dt

(
∂L

∂q̇i

)
=
∑

i

q̇i
∂L

∂qi

.

3. Using the total time derivative of the Lagrangian:

dL

dt
=
∑

i

(
∂L

∂qi

q̇i + ∂L

∂q̇i

q̈i

)
,

and the EL equations, it follows that:

d

dt

(∑
i

q̇i
∂L

∂q̇i

− L

)
= 0.

Thus, the Hamiltonian H = ∑
i q̇ipi − L is conserved.

1.10.5 4. Energy Conservation from EL Equations, With clear
elaborate steps

The Hamiltonian arises naturally from the Euler-Lagrange equations if the system is
time-invariant. Let us derive this step by step.

Step 1: Start with the Euler-Lagrange Equation
The Euler-Lagrange (EL) equation for a generalized coordinate qi is:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

= 0.

Here: - ∂L
∂q̇i

is the generalized momentum pi, i.e., pi = ∂L
∂q̇i

, - ∂L
∂qi

represents the force term
derived from the potential.

The EL equation ensures that the forces balance the change in momentum for each
coordinate.

Step 2: Multiply by q̇i and Sum Over All Coordinates
To derive energy conservation, multiply the EL equation for qi by the velocity q̇i, and
sum over all i: ∑

i

q̇i

(
d

dt

∂L

∂q̇i

− ∂L

∂qi

)
= 0.

This expands to: ∑
i

q̇i
d

dt

∂L

∂q̇i

−
∑

i

q̇i
∂L

∂qi

= 0.

Step 3: Analyze the First Term
The first term is: ∑

i

q̇i
d

dt

∂L

∂q̇i

.

Using the product rule for differentiation:

q̇i
d

dt

∂L

∂q̇i

= d

dt

(
q̇i

∂L

∂q̇i

)
− ∂L

∂q̇i

dq̇i

dt
.
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Summing over all i, this becomes:

∑
i

q̇i
d

dt

∂L

∂q̇i

= d

dt

(∑
i

q̇i
∂L

∂q̇i

)
−
∑

i

∂L

∂q̇i

q̈i.

Step 4: Analyze the Second Term
The second term in the EL equation expansion is:

∑
i

q̇i
∂L

∂qi

.

By the definition of the total time derivative of L, we know:

dL

dt
=
∑

i

(
∂L

∂qi

q̇i + ∂L

∂q̇i

q̈i

)
.

Rearranging for ∑i q̇i
∂L
∂qi

: ∑
i

q̇i
∂L

∂qi

= dL

dt
−
∑

i

∂L

∂q̇i

q̈i.

Step 5: Substitute Back into the Expanded EL Equation
Substituting both terms into the expanded EL equation:

d

dt

(∑
i

q̇i
∂L

∂q̇i

)
− dL

dt
= 0.

Reorganizing:
d

dt

(∑
i

q̇i
∂L

∂q̇i

− L

)
= 0.

This implies that the quantity inside the parentheses is conserved:

∑
i

q̇i
∂L

∂q̇i

− L = constant.

Step 6: Interpret the Result as the Hamiltonian
The conserved quantity is the Hamiltonian H, defined as:

H =
∑

i

q̇ipi − L,

where pi = ∂L
∂q̇i

is the generalized momentum.
If the Lagrangian L is time-invariant (does not explicitly depend on t), the Hamilto-

nian H represents the total energy of the system:

H = T + V = E.

Conclusion:
By multiplying the Euler-Lagrange equations with q̇i and summing over all coordinates,
we derive the conservation of the Hamiltonian. This conserved quantity reflects the total
energy of the system when the Lagrangian is time-independent.
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1.10.6 Conclusion
While integrating the EL equation does not directly give the Hamiltonian H, it reveals
conserved momenta and forms the basis for deriving the Hamiltonian. The Hamiltonian
emerges as a conserved quantity when the Lagrangian is time-invariant, and it can be
constructed from the system’s Lagrangian using its definition.

1.11 Hamiltonian is Total Energy if L is independent
of time

Why, when L is independent of time, Hamiltonian is Total Energy, and hence leading us
to conclude that TE is a first integral of motion which is conserved

1.11.0.1 Step 1: Hamiltonian Definition

The Hamiltonian H is defined as:

H =
∑

i

q̇ipi − L,

where:

• pi = ∂L
∂q̇i

: Generalized momentum,

• L = T − V : Lagrangian,

• T : Kinetic energy,

• V : Potential energy.

1.11.0.2 Step 2: Kinetic Energy in Terms of Velocities

The kinetic energy T is quadratic in generalized velocities:

T = 1
2
∑
i,j

aij(q)q̇iq̇j,

where:

• aij(q): Coefficients dependent on the generalized coordinates qi,

• aij = aji: Symmetry of the kinetic energy terms.

1.11.0.3 Step 3: Generalized Momentum

The generalized momentum pi is defined as:

pi = ∂L

∂q̇i

.

Since L = T − V and V does not depend on velocities:

pi = ∂T

∂q̇i

.
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Substituting T = 1
2
∑

j,k ajk(q)q̇j q̇k:

pi = ∂

∂q̇i

1
2
∑
j,k

ajk(q)q̇j q̇k

 .

Differentiating:
∂

∂q̇i

(ajkq̇j q̇k) = δijajkq̇k + δikajkq̇j.

Using the symmetry aij = aji, this simplifies to:

pi =
∑

j

aij(q)q̇j.

1.11.0.4 Step 4: Substitute ∑i q̇ipi

Now calculate ∑i q̇ipi: ∑
i

q̇ipi =
∑

i

q̇i

∑
j

aij(q)q̇j

 .

Rearranging the summations:∑
i

q̇ipi =
∑
i,j

aij(q)q̇iq̇j.

This is twice the kinetic energy T , since:

T = 1
2
∑
i,j

aij(q)q̇iq̇j.

Thus: ∑
i

q̇ipi = 2T.

1.11.0.5 Step 5: Hamiltonian Expression

Substitute ∑i q̇ipi = 2T and L = T − V into the Hamiltonian definition:

H =
∑

i

q̇ipi − L.

Simplify:
H = 2T − (T − V ).

This gives:
H = T + V.

1.11.0.6 Conclusion

The Hamiltonian H is related to the kinetic energy T and Lagrangian L by the relation:

H = 2T − L.

For time-independent systems, H represents the total energy:

H = T + V = E.
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