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Chapter 1

Central Force

1.1

Central Force

A central force is a force that acts along the line joining a particle and a fixed point,
typically the origin. The magnitude of the force depends only on the radial distance r
between the particle and the center of force, but not on the direction. Mathematically,
it is expressed as:

F = F(r)t,

where: - T is the unit vector in the radial direction, - F(r) is the magnitude of the force,
which depends only on 7.

1.1.1 Characteristics of a Central Force

Radial Nature: The force acts along or opposite to r, and its direction is either
attractive (F'(r) < 0) or repulsive (F(r) > 0).

Conservative Force: Central forces are usually conservative, meaning they can
be derived from a scalar potential V(r):
av .

F = —VV(T) = —%r.

Angular Momentum Conservation: Since the force acts radially, there is no
torque about the center. This ensures that angular momentum L is conserved:

dL
— = 0.
dt

Motion in a Plane: Conservation of angular momentum confines the motion to
a plane perpendicular to L, reducing the problem to two dimensions.

1.1.2 Examples of Central Forces

Gravitational Force:

where G is the gravitational constant.
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e Electrostatic Force:

F— kqiqo 3
r2
where k is Coulomb’s constant.
« Spring Force (Radial Hooke’s Law):
F = —krt,

where k is the spring constant.

1.1.3 Applications

o Planetary Motion: Central forces govern planetary orbits, as described by New-
ton’s law of gravitation and Kepler’s laws.

e Atomic Models: The electrostatic force between electrons and nuclei in atoms is
a central force.

e Oscillatory Systems: Radial spring forces model harmonic oscillators in various
fields of physics.

In summary, central forces simplify the analysis of motion by reducing the dynamics
to two dimensions and conserving angular momentum. They are fundamental to under-
standing natural phenomena ranging from celestial mechanics to molecular dynamics.

1.2 Derivation of r; and ry in terms of R, m;, ms, and
r

1.2.1 The diagram

This document provides a detailed step-by-step derivation of r; and ry in terms of the
center of mass R, the masses m; and ms, and the relative position vector r = ry — 1.

1.2.2 Step 1: Definition of Center of Mass

The center of mass (COM) position vector R is defined as:

miry + molro
R=———"-"=.
my + Mo

This represents the weighted average of the positions of the two masses.

1.2.3 Step 2: Define Relative Position Vector
The relative position vector r is defined as:
r=7T9 —1TI;.

Rearranging, we can write:
o =T+ 1r;.

This relationship will be used to substitute ry in the center of mass equation.
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1.2. DERIVATION OF r; AND ry IN TERMS OF R, mq, mo, AND r
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Figure 1.1: Hlustration of the vectors ry, ro, r, and R.

1.2.4 Step 3: Derive r;
1. Substitute ro = r + r; into the COM equation:

mary + me(r +1rq)

R =
my + Mo
2. Expand the numerator:
R — MYy + Mol + Meol'y
my + Mo '
3. Combine terms involving r;:
my + Mg)ry + Mal
R — (my 2)T1 ot

mq + Mg
4. Eliminate the denominator:

(my + mg)R = (mq + ma)r; + mor.

5. Isolate ry: -
rr=R - 2y
my + Mo

1.2.5 Step 4: Derive ry

1. Substitute r;{ = ry — r into the COM equation:

R - mi(ry —r) +m2r2'
my + Mo
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2. Expand the numerator:
mMiro — MTr + Moo

R =

m1+m2

3. Combine terms involving rs:

R — (mq 4+ mao)ry — myr
my + Mo .

4. Eliminate the denominator:

(m1 4+ mg)R = (mq + ma)ry — myr.

5. Isolate rs:

=R+ Lr.
my + Mo
1.2.6 Final Results
1. Position of ry:
m
rr=R-— 2
mi1 + mo
2. Position of rs:
m
r,=R+ 1 i
my + Mo

1.2.7 Symmetry Between r; and r,

The expressions for r; and ry exhibit symmetry:

mo my
r=R-————r, rn=R+——r.
m1+m2 m1+m2

This symmetry reflects the balance of the system about the center of mass.

1.3 Reduction of Two-Body Problem to One-Body
Problem

This document derives the kinetic energy (KE) and potential energy (V) for a two-body
system and reduces the two-body problem to an equivalent one-body problem.

1.3.1 Step 1: Kinetic Energy and Potential Energy in Terms of
r; and r
The total kinetic energy of the two-body system is given by:
1 1,

T = imlr% ‘l— 57’”21"2.

The potential energy depends only on the relative position vector r = ro — ry:

V =V(ry,ry) = V(r).
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1.3. REDUCTION OF TWO-BODY PROBLEM TO ONE-BODY PROBLEM )

1.3.2 Step 2: Rewrite KE and V in Terms of r, R, m;, and mo

1. The center of mass R is defined as:
miry + Maly

R:

mi1 + mao

The relative position vector is:
r=7T9 —1TI;.

2. Using these, the positions r; and ry can be written as:

meo my
rnr=R-—r, rn=R+——r.
mi + Mo my + Mo
3. The velocities r; and ry become:
. : mgy . . : my .
rn=R-—r, 1m=R+4+——Tr.
mi + Mo mi + Mo

4. Substitute into the kinetic energy:

1 . 2 . 2
(R (e )
2 mi1 + Mo 2 my + Mo

5. Expand the squares and simplify using my + ma:

1 . 1
T = §(m1 + mQ)RQ + §Mf2,

where p is the reduced mass:
myms

my +msy’
6. The potential energy becomes:

V =V(r).

1.3.3 Step 3: Lagrangian for the System
The Lagrangian L is:

L=T-V.
Substituting the expressions for 7" and V:

1 . 1
L= §(m1 + mg)R? + iui‘Q — V(r).

1.3.4 Step 4: R as a Cyclic Coordinate

1. The center of mass R appears only in the kinetic energy term %(ml + mg)R2 and

does not appear in the potential energy V. 2. Therefore, R is a cyclic coordinate, and
its conjugate momentum:

P= (m1 + m2)R

is conserved.
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6 CHAPTER 1. CENTRAL FORCE

1.3.5 Step 5: Reduced Lagrangian in Terms of ; and r

After separating the motion of the center of mass, the reduced Lagrangian describes the

relative motion: |

Licduced = §Nr2 - V(I‘)

This Lagrangian describes a single particle of mass p moving under the influence of
the potential V(r).

1.3.6 Conclusion: Reduction of Two-Body Problem to One-
Body Problem

1. The original two-body problem, described by the positions r; and rs, has been reduced
to two independent problems: - Motion of the center of mass R, which is uniform if no
external forces act. - Relative motion of a single particle of mass 1 under the potential
V(r).

2. This simplification is achieved by introducing the center of mass and relative
position coordinates, effectively reducing the degrees of freedom from two bodies to one
equivalent body.

1.4 Deriving the Euler-Lagrange Equation for the
Reduced Lagrangian

Let’s explore the process of deriving the Euler-Lagrange equation for the reduced La-
grangian in the context of a two-body system. To make it engaging, imagine we're
discussing this as part of a one-on-one mentorship session, walking through the steps
interactively.

1.4.1 Step 1: Expressing the Full Lagrangian
In a two-body system, the relative position vector r is written as:
r=rT,

where: - r: radial distance, - T: unit vector in the radial direction.
Using spherical coordinates (r, 6, ¢), the Lagrangian becomes:

1 . .
L= SH (7’“2 + 7%0% 4 r* sin® 0gz52) —V(r),

mimae
m1+m2

onr,-1,0,¢ are time derivatives of the spherical coordinates.

where: - p = is the reduced mass, - V(r) is the potential energy depending only

1.4.2 Step 2: Motion Constrained to a Plane

A central force problem inherently has rotational symmetry about the center of mass.
Here’s why the motion of the two-body system always occurs in a plane:
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1.4. DERIVING THE EULER-LAGRANGE EQUATION FOR THE REDUCED
LAGRANGIAN 7

1.4.2.1 Step 2: Angular Momentum

In a central force problem, the motion is confined to a plane due to the conservation of
angular momentum. Let us derive this step by step:
1. Central Force Definition:

The central force is given as:
F = F(r)r,

where F'(r) depends only on the radial distance r, and t is the unit vector in the radial
direction.
2. Torque is Zero:
The torque 7 is:
T=rxF.

Substituting F = F(r)i:
T=rXx(F(r)t)=0,
because r and 1 are collinear. Hence, there is no torque.

3. Angular Momentum Conservation:
The angular momentum L of the system is:

L=rx pur.
Taking the time derivative:
dL d (r x i)
— = —(r x ur).
it —de M

4. Product Rule for the Derivative:

Using the product rule:
dL

— =T X ur +1r X ur.
di H H
- The first term is © x pur = 0, since the cross product of a vector with itself is zero. -
The second term is:
r X pr,
where I = % = F(r)t. Substituting:
rx ut=rx (F(r)t) =0,

because r and 1 are collinear.
5. Conclusion:
Since both terms are zero, the time derivative of angular momentum is zero:

T _y,

dt
Hence, angular momentum L is conserved, and the motion is confined to a plane perpen-
dicular to L.

6. Direction of Angular Momentum: The vector L is perpendicular to the plane
formed by r and r. This implies the motion lies entirely within a fixed plane perpendicular
to L.

7. Simplification: By choosing the plane of motion to coincide with the equatorial
plane 6 = 7/2, we simplify the dynamics. The coordinate ¢ remains to describe angular
motion within this plane.
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8 CHAPTER 1. CENTRAL FORCE

The reduced Lagrangian now becomes:
I ST
L—§,u(r + 779 ) —V(r).

Here, ¢ is a cyclic coordinate, meaning it does not explicitly appear in the Lagrangian
but contributes through the conserved angular momentum.

1.4.3 Step 3: Euler-Lagrange Equations
Radial Motion The Euler-Lagrange equation for r is:
dfory oL _,
dt \ or or
1. Compute %:
oL _
ar M

2. Compute the time derivative of %ﬁ:

d (oL _ .
at\or ) M

3. Compute g—f: From the Lagrangian:
Lo 9
L=gu (i +r%0%) = V(r),
the partial derivative with respect to r is:
oL .y OV
ar M gy
4. Substitute into the Euler-Lagrange Equation:
. oV
pit — prg? + — = 0.
or

1.4.4 Angular Motion

see 1.9 The Euler-Lagrange equation for ¢ is:
dfory or_,
dt \op) 0o
Since ¢ is cyclic, 2& = 0, and:
d (0L
— | =] =0.
i (5

9 a¢
The conserved angular momentum is:

L, = ur¢.
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1.5. REVISITING IGNORABLE COORDINATE AND CYCLIC COORDINATE IN
CENTRAL FORCE PROBLEMS 9

1.4.5 Step 4: Effective Potential

Using the conserved angular momentum, the angular term can be absorbed into an ef-
fective potential:

L
2ur?’

Ver(r) = V(r) +

The radial equation becomes:
OVest

A= "5,

1.4.6 Centrifugal Potential

The centrifugal potential arises naturally in problems involving central forces when motion
is analyzed in polar or spherical coordinates. It is an effective potential term that accounts
for the angular momentum of the system, reflecting the "apparent force" experienced due
to rotation. Mathematically, it is expressed as:

L2

‘/centrifugal (7‘) = m ;

where L, is the conserved angular momentum, p is the reduced mass, and r is the radial
distance. This term increases sharply as r decreases, creating a barrier that prevents the
particle from collapsing into the central force. The centrifugal potential, combined with
the actual potential V'(r), forms the effective potential Vog(r), which governs the radial
motion of the particle. This concept is essential in explaining phenomena such as stable
orbits and equilibrium distances in celestial mechanics and atomic physics.

1.4.7 Conclusion

By leveraging the rotational symmetry of the two-body problem, we constrained the
motion to a single plane. The azimuthal coordinate ¢ remains as a cyclic coordinate,
contributing to the dynamics through the conserved angular momentum. The radial
motion is fully described by an effective potential, simplifying the analysis significantly.
Note, that we have retained ¢ even though ¢ is cyclic. But by pointing out R is cyclic
we had ignored R from the entire calculation. Next section explains why.

1.5 Revisiting ignorable coordinate and cyclic coor-
dinate in Central force problems

1.5.1 Key Distinction: Cyclic vs Ignorable Coordinates

Cyclic and Ignorable Coordinates

Definition. In Lagrangian mechanics, a generalized coordinate ¢; is said to be cyclic
(or ignorable) if the Lagrangian does not depend explicitly on it:
oL
dq; B

0.
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10 CHAPTER 1. CENTRAL FORCE

Then, from Lagrange’s equation,

d <8L> oL oL
0 =— p; = —— = constant.

dt\ dg; N 0 N 9q;

Thus, the momentum conjugate to a cyclic (ignorable) coordinate is conserved.

Central force example. For motion in a central field,

L=1m(i*+ r20%) — V(r),

we have 20 = 0. Hence 0 is a cyclic (ignorable) coordinate, and the corresponding
momentum
oL o
=—=mrd=1,
Do Y

is conserved.

Common confusion. Some students think that “cyclic” and “ignorable” differ in
meaning, but in standard Lagrangian mechanics they are exact synonyms:

Cyclic coordinate = Ignorable coordinate.

When the distinction can appear. In an ordinary, unconstrained, time—independent
system, no such distinction exists. However, in certain situations a coordinate may be
cyclic in form yet not fully ignorable in practice:

1. Constraints or gauge freedom. If the coordinate is linked by a constraint to
another variable, it may not appear in L (hence cyclic), but it cannot be eliminated
physically. For example, a bead constrained to move on a rotating hoop: the
coordinate along the hoop can be formally cyclic, yet the geometric constraint ties
it to the hoop’s rotation.

2. Time—dependent Lagrangian. If L(g;, ¢;,t) depends explicitly on ¢, even a cyclic
¢; does not guarantee conservation of its conjugate momentum. Example: a charged
particle in a time—varying magnetic field. The azimuthal coordinate ¢ may be cyclic,
but the canonical momentum p, = mr2gb—|—eA¢(t) is not constant because of explicit
time dependence.

3. Piecewise or regional symmetry. If the potential has central symmetry only in
part of space, e.g.

Vi(r), r <R,

Vir,6) = {Vg(r, 0), r>R,

then @ is cyclic only in the inner region (r < R). Outside, 0V /90 # 0, so 0 is no
longer cyclic. Hence cyclicity may be local, not global.
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1.6. SUMMARY
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Summary.

Situation Cyclic? Ignorable? | Remarks

Central force (no constraints) Yes Yes Standard case: cyclic § = conserve:

Constraint couples ¢; Formally yes No Cyclic in expression, but constrain
vents elimination

Time—dependent fields Formally yes No Explicit ¢ dependence breaks conser
of p;

Piecewise symmetry Yes (regionally) | No (globally) | Cyclic only where potential is symn

Conclusion. In a simple, unconstrained, time-independent system, there is no region
where a coordinate is cyclic but not ignorable. Such a distinction arises only in systems

with constraints, explicit time dependence, or partial symmetries.

1.6 Summary

The azimuthal angle ¢ in a central force problem is a cyclic coordinate, leading to the

conservation of angular momentum. However, it is not an ignorable coordinate because

its conjugate momentum p, affects the radial motion through the effective potential.
This distinction highlights the nuanced role of cyclic coordinates in shaping the sys-

tem’s dynamics.

1.7 Differential Equation for » Using the Energy Method

To derive the differential equation for the radial motion r, we use the energy conservation

principle.

1.7.0.1 Step 1: Write the Total Energy

The total energy E of the system is the sum of the kinetic energy T and the effective

potential Vig(r):

E=T + Véﬁ(T),

where: - T is the kinetic energy, - Vig(r) is the effective potential energy.

1. Kinetic Energy:
1

1
T = + e’

2 2

where y is the reduced mass, 7 is the radial velocity, and ¢ is the angular velocity.
2. Effective Potential: The effective potential is:

Verr(r) = V(r) +

L2

2ur?’

where L, = /LTQQZ') is the conserved angular momentum.
3. Total Energy: Substituting 7" and V.g(r) into the total energy:

1

1 - L
E= i+ §ur2gz52 +V(r)+—=

2

2

2ur?’
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12 CHAPTER 1. CENTRAL FORCE

Using ¢? = Nﬁi, the total energy simplifies to:

1 L?
E= -+ —= +V(r.
i + 2y + V(r)
Hence:
1

E = 5/17'“2 + Ve (r),

where Veg(r) = V(r) + L:

2ur?”

1.7.0.2 Step 2: Solve for r

From the total energy equation:
R
SHT™ = E — Veg(r).

Multiply through by 2/u:
2
i == (E = Vea(r)).
M( (r))

Taking the square root:

;o i\/Q (E — Ver(r))-

!

1.7.0.3 Step 3: Differential Equation for r

The differential equation for 7 is:

(Z = i\/i (E = Veg(r)).

This equation relates the radial position r to the total energy F, the effective potential
Ver(r), and the reduced mass p.

1.8 Orbits in a Central Force Field

The motion of a particle in a central force field is determined by its total energy (FE)
and the effective potential (V.g(r)). For a potential V (r) = —£, the effective potential
is:

ko L?
Vert(r) = —— +

where:
o k > 0: strength of the attractive potential,

e L: angular momentum,

e p: reduced mass.
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1.8. ORBITS IN A CENTRAL FORCE FIELD 13

1.8.1 Possible Scenarios

1.8.1.1 1. F < 0: Bound Orbit

o Nature: The particle’s total energy is less than zero, meaning it is trapped in the
potential well.

« Radial Motion: The particle oscillates between two turning points (rp;, and
Tmax) Where F = Vig(r). At these points, the radial velocity 7 = 0, and the particle
reverses direction.

« Trajectory: The orbit is elliptical (or circular if £ = Vig(rpin)). Conservation of
angular momentum confines the motion to a plane.

1.8.1.2 2. E = 0: Parabolic Trajectory

o Nature: The particle has just enough energy to escape the potential, moving along
a parabolic trajectory.

« Radial Motion: There is a single turning point () where E = Vg(r). Beyond
Tmin, the particle moves outward indefinitely as r — oo.

« Forbidden Region: If r < rpi,, 72 < 0, which is non-physical, indicating that the
particle cannot approach closer than r;,.

o Trajectory: The orbit is parabolic, representing the escape of the particle at
precisely the escape velocity.

1.8.1.3 3. E > 0: Unbound Orbit

o Nature: The particle’s energy exceeds the maximum of Vg (r), allowing it to escape
the central force field.

« Radial Motion: There is one turning point (rnm) where E = Vig(r). The particle
moves outward indefinitely for » > r;,, and r — oo as t — oo.

« Forbidden Region: For r < ry,, 72 < 0, making this region inaccessible.

o Trajectory: The orbit is hyperbolic, indicating an unbound trajectory.

1.8.1.4 4. E = Veg(r): Circular Orbit (Special Case)

o Nature: At this energy, the particle is momentarily at rest in the radial direction
(r =0).

« Radial Behavior:

— If B = Veg(min), the particle remains at the same radius r, resulting in a
circular orbit.

— For any other r, this represents a turning point of the radial motion, where
the particle reverses direction.
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14 CHAPTER 1. CENTRAL FORCE

1.8.2 Summary of Orbit Types

Energy (F) Orbit Type Key Characteristics
E<0 Bound (Elliptical) Constrained between ryi, and rpax.
E=0 Parabolic (Escape) Single turning point r.;,, particle escapes.
E>0 Unbound (Hyperbolic) Single turning point r;,, particle escapes infinitely.
E = V(r) | Circular Orbit (Special Case) Particle remains at a fixed radius r.

1.8.3 Graphical Representation

Below is the graph showing the effective potential Vig(r), the physical potential Vphysical (7'),
and the centrifugal potential Vientrifugal (7). Turning points and orbit types are determined
based on the energy levels F relative to Veg(r).

- Effective Potential and Energy Levels in a Central Force Field
: V_physical = -k/r
Lt V_centrifugal = L2/ (2 * mu * r~2)
1.5} —— V_eff = V_physical + V_centrifugal
: —--- E = 0 (Parabolic trajectory)
——- E < 0 but E > V_eff min (Bound orbit)

W 1.0t —==- E = V_eff min (Circular orbit)
§ E > 0 (Unbound orbit)
(]
c
i
ko]
c
© e e o .
S
D S I N Sl Y S S
S O N L S SV S
S E = V_eff min
3
-1.01
—15+¢
=205 2 4 6 8 10

Radial Distance r

Figure 1.2: Effective Potential and Energy Levels in a Central Force Field

Solving and obtaining the trajectory of Motion from
first integrals (Energy and Angular momentum)—The
Energy Equation

1. Central Force and Energy Equation

For a particle of mass m moving under a central force F(rr) = F(r) #, the total mechanical
energy is conserved:
E =T+ Vg(r)

where the kinetic energy in plane polar coordinates is
T=1m (# +r26°)
2
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and the effective potential is

L2

Veff(T) = V(T) + W

Here L = mr?0 is the conserved angular momentum. Thus,

1 L?
E = —mr?
er + 2mir?

+ V(r)

2. Radial Velocity

Rearranging Eq. (1.1):

A

m m2r?

This gives the radial component of velocity as a function of r.

3. Eliminating Time Variable

Since L = mr26,

and hence

Substituting for 7,

dr  mr? |2 L2
- = - — r —
df L Vm m2r?

This gives the differential equation of trajectory r(6).

1
r

1 d 1d
Let u = —, so that d—g Ed—z Substitute into Eq. (1.2):

4. Substitution u =

1 du m 1 L2y?2
——— = ——/2|E=-V(—- )| -
u2df  Lu? { (uﬂ m

or,

2,2
——\/E v ~ LPu

This can be integrated to obtain u(f) or r(0).
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k
5. Inverse Square Law: F = ——
r

k
For gravitational or electrostatic attraction, V' (r) = ——. Differentiating Eq. (1.3) leads
r
to Binet’s equation:
d*u mk

Its general solution is

u(f) = ngf [1+4 ecos(f — 6y)]
or equivalently,
r0) = 1+ ecof(@ —0o) (1.5)
where 12
Pk

is the semi-latus rectum, e is the eccentricity, and 6, the phase angle.

Differential Equation with Explicit Parameter Definitions

General central force (Binet form). For a central force F(rr) = F(r) #, define u(6) =
1/r. Binet’s equation is

d*u m 1
— = — F{—-). 1.6
7= ety (16)
ko . :
Inverse-square force. For F(r) = —— (with k > 0 for attraction), Eq. (1.6) reduces
r
to the linear ODE » L
u m
- 1.

whose general solution is

Trajectory from the first integrals (standard method)

Constants of motion. Work with specific quantities (per unit mass):

h=r% (specific angular momentum, constant), €= %(T +7262 ) = (specific energy, constant

Step 1: Eliminate time using h. From the energy integral,

o) = K

Since 6 = —» we have
r
) 2
do Q _ h/r g hdr ‘
dr 1\ [o(e + pfr) — h2/r? r2\/2(e + p/r) — h2/r2
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1.8. ORBITS IN A CENTRAL FORCE FIELD 17

du

Step 2: Substitute u = % With u = % and dr = ——, Eq. (1) becomes
u

hdu

dg = — .
\/2(5 + pu) — h2u?

Step 3: Complete the square in the quadratic under the root. Write

2 2 2 2 2
2(e + pu) — h? 2:—h2<u2—h/;u—h§):h2<u+€—<u—ﬂ> >

Define the eccentricity via

Then
2 2
2(5—1—,uu)—h22:h2[('z§> —(u—}é)}

Step 4: Integrate in closed form. Equation (??7) becomes

h du du
do = — 2 5 /3 2’
C R G
with a = %, Uy = % Using the standard integral
/ dx . (m — m())
= arcsin ,
\/a2 — (z — x¢)? a
we obtain
6’—00:—arcsin<u_uo) = cos(&—@o):u_uo.
a a
Step 5: Polar equation of the conic. Therefore
u(f) = ug + acos(d — 0y) = % [1 + ecos(f — 6y)|.
Since u = 1/r, the trajectory is
p h?
0) = = —.
r(®) 1+ ecos(d —6y) | b o

Parameter meanings and orbit types. Here p is the semi-latus rectum, e the ec-
centricity from (1.8.3), and 6, fixes the periapsis direction. Orbit type: e < 1 (ellipse,
e <0), e =1 (parabola, ¢ = 0), e > 1 (hyperbola, € > 0).
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18 CHAPTER 1. CENTRAL FORCE

Ellipse — foci, directrices, semi-axes, latus rectum, eccentricity

—— Ellipse

Ellipse: x?/a? + y?/b? =1
c?2=a’-b? e=cla<l, p=a(l-e?)

Directrix x = — a/e Directrix x = + a/e

Latus rectum 2b%/a

ieminor b
Apogpsis Focus F2 \ Periapsis

A
Semi-major a

ter

/

-4

Figure 1.3: Caption

(Optional) Mapping to L, m, k notation. If you keep the mass and write F(r) =

—— T, then
r
L Lk [
m’ F=m Pk ‘= mk?
1 1 p
u(6) r(0) p[ e cos 0)}’ r(®) 1+ ecos(6 — 6p) (18)

Parameter definitions from integrals of motion. Let the conserved angular mo-
mentum be L = mr?0 and the total energy be

E= ;m (72 +r%6?) —fj

Then the constants in (1.8) are

p= mz: (semi-latus rectum), (1.9)

e=1/1+ 2EL7 (eccentricity), (1.10)
mk?

0o is the periapsis direction (set by initial angle at closest approach). (1.11)

Orbit type: E < 0 = e < 1 (ellipse), E =0 = e =1 (parabola), E >0=¢€¢ > 1
(hyperbola).
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-2

Parabola — focus, directrix, vertex, latus rectum, e=1

—— Parabola

Directri

x=—f

Latus rectum =4f

Vertex (0,0)

Parabola: y? = 4fx
e=1, p=2f

Figure 1.4: Caption
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20 CHAPTER 1. CENTRAL FORCE

Hyperbola — foci, directrices, asymptotes, latus rectum, eccentricity

—— Right Branch
Left Branch

tus fectum 2b%/a

> 0 . i

i
i

i

Focus ... Fot‘
.. i

Center i

i

i

Asymptotes

Hyperbola: x?/a? — y?/b?> =1
c?=a’+b? e=cla>1, p=a(e?-1)
—4
Directrix x = — a/e Directrix x = + a/e

Figure 1.5: Caption

From initial data (rg, 7o, 90). Compute
. 1 ok
L = mrjby, E = §m<r02 + 7"3902) —
then insert into (1.9)—(1.10). The phase 6y is fixed by the condition that r(6) attains its

r
minimum (periapsis) at 6 = 6, equivalently @‘9 = 0.
0

From turning points (bound case). If periapsis and apoapsis radii are r, and r,,

B 2rpr,  Ta—Tp D D
- ) €= 9 rp - 9 ra -
Tp+ Tq Te+Tp

Scattering (unbound) via impact parameter b and v,. For E = imuvZ > 0 and
L = mbu,
m2b2vt, L mb*ul

2 PT ok T Tk

e=1/1+

The scattering (deflection) angle satisfies A = 2 arcsin(%).

6. Nature of Trajectories

Energy E | Eccentricity e Nature of Trajectory
E<0 e<1 Ellipse (Bound orbit)
E=0 e=1 Parabola (Escape orbit)
E>0 e>1 Hyperbola (Unbound orbit)
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7. Summary of Method

Step | Description
1 | Write the energy equation E = ims? + 25;,2 +V(r)
2 Express 7 in terms of E, L,r, V(r)
: d
3 | Replace = L/(mr?) and form d—g
4 Introduce u = 1/r to simplify the differential equation
5 | Solve for u(f) or r(f) to obtain the trajectory
6 Analyze nature of orbits based on F and e
8. Remarks

A plot of the effective potential Vog(r) vs r shows turning points (where 7 = 0), helping
to visualize bound and unbound trajectories. is given 1.2

1.9 Angular Momentum as a First Integral

Definition of a First Integral:

A first integral is a conserved quantity derived directly from the equations of motion of
a system. It provides a constraint or relationship that holds throughout the motion. A
first integral corresponds to a physical quantity that remains constant due to a symmetry
in the system.

1.9.1 Angular Momentum as a First Integral

Angular momentum L is the first integral of the equations of motion in systems with
rotational symmetry (central forces). Let us derive this step by step.

1. Central Force and Torque:
For a central force F that depends only on the radial distance r:

F = F(r)t,

where T is the unit vector in the radial direction.
The torque 7 about the origin is:

T=rxF.
Since r and F are collinear, their cross product is zero:
T=rXx(F(r)t)=0.

No net torque implies that the angular momentum L is conserved:

dL
— =17=0.
it
2. Angular Momentum Equation:
The angular momentum L is defined as:
L=rxp,
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22 CHAPTER 1. CENTRAL FORCE

where p = mr is the linear momentum of the particle. Taking the time derivative:

a_d (r x p)
dt — dt P/
Using the product rule:
dL
E:I"Xmi‘—l—rxmi‘.

- The first term, 1 X mr, is zero because the cross product of a vector with itself is
zero. - The second term is:
r X mr,

where i = £ = F(r)f. Substituting:
r x mi=r X (F(r)t) =0,

because r and r are collinear.

Thus:
dL B

dt
which confirms that angular momentum is conserved.
3. Angular Momentum as a First Integral of Motion:

The conservation of angular momentum L provides a direct relationship between the
motion and the symmetry of the system: - First Integral of Rotational Motion: Angular
momentum is the integral of the rotational equations of motion. It reflects the fact that no
external torque acts on the system. - Connection to Symmetry: According to Noether’s
theorem, every continuous symmetry corresponds to a conserved quantity. For rotational
symmetry about the origin, the conserved quantity is angular momentum.

0,

1.9.1.1 Implications of Angular Momentum Conservation

- Angular momentum is a constraint that reduces the degrees of freedom in the system.
- In planar motion (e.g., central force problems), the magnitude of L is:

L=|L| =mr?9,
where ¢ is the angular velocity. This relationship simplifies the equations of motion by

eliminating the explicit dependence on ¢.

1.9.2 Conclusion

Angular momentum is a first integral of the equations of motion in systems with central
forces. It reflects the rotational invariance of the system and simplifies the dynamics by
reducing the number of variables needed to describe the motion.
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