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Chapter 1

Coordinate system

1.1 Introduction
In this lecture, we will explore the concepts of plane polar coordinates and how they
compare to Cartesian coordinates. We will derive key equations for position, velocity, and
acceleration in polar coordinates, and highlight the differences in unit vectors between
these coordinate systems. The discussions here apply to other coordinate systems, such
as the cylindrical coordinate system.

1.2 Plane Polar Coordinates vs Cartesian Coordi-
nates

1.2.1 1. Constancy of Unit Vectors
Cartesian Coordinates: In the Cartesian system, the unit vectors î, ĵ, and k̂ (or
equivalently x̂, ŷ, ẑ) are constant. They point in fixed directions:

• î along the x-axis,

• ĵ along the y-axis,

• k̂ along the z-axis.

These unit vectors do not change direction as you move from one point to another
in space. This makes the Cartesian system particularly simple for problems where the
geometry does not change with direction.

Curvilinear Coordinates: In curvilinear systems like the plane polar coordinate sys-
tem, the unit vectors r̂ (radial) and θ̂ (angular) are not constant. They change direction
depending on the position of the point. Specifically:

• r̂ points radially outward from the origin to the point of interest.

• θ̂ is perpendicular to r̂, pointing in the direction of increasing θ.

This distinction introduces additional complexity, as the unit vectors themselves de-
pend on the position of the point and change as the point moves.
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2 CHAPTER 1. COORDINATE SYSTEM

1.2.2 2. Diagrams for Distinction
Cartesian Coordinates: A point P (x, y) is represented with constant unit vectors î
and ĵ.

Polar Coordinates: A point P (r, θ) with radial unit vector r̂ and tangential unit
vector θ̂. These vectors change direction as θ varies.

Figure 1.1: Radial and Tangential Unit Vectors in Polar Coordinates

1.2.3 3. Unit Vectors in Plane Polar Coordinates in Terms of
Cartesian Coordinates

The unit vectors in plane polar coordinates, r̂ and θ̂, can be expressed in terms of Carte-
sian coordinates as:

r̂ = cos(θ)̂i + sin(θ)ĵ

θ̂ = − sin(θ)̂i + cos(θ)ĵ

Interpretation:

• r̂ points radially outward.
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1.2. PLANE POLAR COORDINATES VS CARTESIAN COORDINATES 3

• θ̂ is perpendicular to r̂ in the counterclockwise direction.

Figure 1.2: Constancy of Unit Vectors hati, hatj vs. Varying hatr, hattheta

1.2.4 4. Position Vector in Cartesian and Plane Polar Coordi-
nates

Cartesian Coordinates Plane Polar Coordinates
r⃗ = xî + yĵ r⃗ = rr̂
x = r cos(θ) r =

√
x2 + y2

y = r sin(θ) θ = tan−1
(

y
x

)

Content by Dr. Jose Mathew, The Cochin College



4 CHAPTER 1. COORDINATE SYSTEM

Figure 1.3: Dependence of r and theta on x and y

1.3 Velocity in Plane Polar Coordinates
To obtain the velocity in plane polar coordinates, we take the time derivative of the
position vector r⃗ = rr̂.

Step-by-Step Derivation:

v⃗ = d

dt
(rr̂) = dr

dt
r̂ + r

dr̂

dt

Now, since r̂ is not constant, its derivative with respect to time can be found as
follows:

dr̂

dt
= θ̇θ̂

Thus, the velocity becomes:
v⃗ = ṙr̂ + rθ̇θ̂

Where:

• ṙ is the radial velocity,

• rθ̇ is the tangential velocity.
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1.4. ACCELERATION IN PLANE POLAR COORDINATES 5

Figure 1.4: How x and y relate to theta

1.4 Acceleration in Plane Polar Coordinates
The acceleration is obtained by taking the time derivative of the velocity vector:

a⃗ = d

dt

(
ṙr̂ + rθ̇θ̂

)
Applying the product rule to each term:

a⃗ = r̈r̂ + ṙ
dr̂

dt
+ d

dt

(
rθ̇θ̂

)
a⃗ = r̈r̂ + ṙθ̇θ̂ + ṙθ̇θ̂ + rθ̈θ̂ − rθ̇2r̂

Simplify:
a⃗ =

(
r̈ − rθ̇2

)
r̂ +

(
rθ̈ + 2ṙθ̇

)
θ̂

1.5 Conclusion
We have discussed the differences between Cartesian and polar coordinates, the derivation
of velocity and acceleration in polar coordinates, and the effect of the varying nature of
polar unit vectors r̂ and θ̂. Unlike the constant unit vectors in Cartesian coordinates,
polar unit vectors change as the point of interest moves.

Content by Dr. Jose Mathew, The Cochin College



6 CHAPTER 1. COORDINATE SYSTEM

1.6 Exercises

Q1)
A velocity vector at the point (1, 1) has a magnitude of 2.5 m/s and makes an angle of
30◦ with the horizontal. Express this vector in polar coordinates.

Solution:

Step 1: Calculate the Position Vector r in Polar Co-
ordinates
The position vector r is the distance from the origin to the point (1, 1). The formula for
the magnitude of the position vector is:

r =
√

x2 + y2

Substituting x = 1 and y = 1:

r =
√

12 + 12 =
√

2 ≈ 1.414 m

Step 2: Find the Angle θ for the Position Vector
The angle θ for the position vector can be found using:

θ = tan−1
(

y

x

)
Substituting x = 1 and y = 1:

θ = tan−1(1) = 45◦

Step 3: Break Down the Velocity Vector into Radial
and Tangential Components
In polar coordinates, the velocity vector can be decomposed into:

• Radial component vr (along the direction of the position vector).

• Tangential component vθ (perpendicular to the position vector).

Radial Component vr

The radial component is the projection of the velocity vector along the position vector:

vr = v cos(θv − θ)

Substituting v = 2.5 m/s, θv = 30◦, and θ = 45◦:

vr = 2.5 cos(30◦ − 45◦) = 2.5 cos(−15◦)

vr ≈ 2.5 × 0.9659 ≈ 2.41 m/s
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1.6. EXERCISES 7

Tangential Component vθ

The tangential component is the projection of the velocity vector perpendicular to the
position vector:

vθ = v sin(θv − θ)

Substituting v = 2.5 m/s, θv = 30◦, and θ = 45◦:

vθ = 2.5 sin(30◦ − 45◦) = 2.5 sin(−15◦)

vθ ≈ 2.5 × (−0.2588) ≈ −0.65 m/s

Step 4: Final Expression in Polar Coordinates
The velocity vector in polar coordinates is:

vr ≈ 2.41 m/s, vθ ≈ −0.65 m/s

Thus, the velocity vector in polar coordinates at the point (1, 1) is:

v = (2.41 r̂, −0.65 θ̂) m/s

Q2: Direction of Radial Component of Velocity at Maximum
Height of a Projectile
At the maximum height of a projectile, the radial component of velocity points in the
direction of the change in position relative to the origin. Since the vertical velocity is
zero at maximum height, the radial component of velocity points horizontally outward
from the origin.

Q3: Direction of Tangential Component of Velocity at Maximum
Height of a Projectile
At the maximum height of a projectile, the tangential component of velocity is perpen-
dicular to the radial component and is zero because the object is momentarily at rest in
the vertical direction.

Answer to Q2 and Q3. Radial and Tangential Com-
ponents of the Ball’s Velocity at Maximum Height

Given Data:
• Initial velocity, v0 = 100 m/s

• Launch angle, θ0 = 30◦

• Gravitational acceleration, g = 9.8 m/s2
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8 CHAPTER 1. COORDINATE SYSTEM

Figure 1.5: How x and y relate to theta

Step 1: Horizontal and Vertical Components of the
Initial Velocity
The initial velocity has two components: horizontal (v0x) and vertical (v0y).

1. **Horizontal component of velocity**:

v0x = v0 cos(θ0)

Substituting the values:

v0x = 100 × cos(30◦) = 100 ×
√

3
2 = 86.60 m/s

2. **Vertical component of velocity**:

v0y = v0 sin(θ0)

Substituting the values:

v0y = 100 × sin(30◦) = 100 × 1
2 = 50 m/s

Step 2: Time to Reach Maximum Height
At maximum height, the vertical component of the velocity becomes zero (vy = 0).

Using the first equation of motion to calculate the time to reach the maximum height:

vy = v0y − gt
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1.6. EXERCISES 9

Setting vy = 0:
0 = 50 − 9.8t

t = 50
9.8 ≈ 5.10 seconds

Step 3: Position of the Ball at Maximum Height
1. **Horizontal position** at maximum height:

xmax = v0x × t

Substituting the values:
xmax = 86.60 × 5.10 ≈ 441.66 m

2. **Vertical position** (maximum height):

ymax = v0y × t − 1
2gt2

Substituting the values:

ymax = 50 × 5.10 − 1
2 × 9.8 × (5.10)2

ymax ≈ 255 − 127.5 = 127.5 m
Thus, the position of the ball at maximum height is:

(xmax, ymax) = (441.66 m, 127.5 m)

Step 4: Radial and Tangential Components of Velocity
at Maximum Height
At the maximum height, the velocity has only the horizontal component, which we already
calculated to be 86.60 m/s.

1. **Radial Direction**: The radial component of the velocity is the component of
the velocity in the direction of the position vector r̂.

The angle of the position vector is:

θr = tan−1
(

ymax

xmax

)
= tan−1

( 127.5
441.66

)
≈ 16◦

The radial velocity is the projection of the total velocity along the direction of the position
vector:

vr = vx cos(θr)
Substituting the values:

vr = 86.60 × cos(16◦) ≈ 83.21 m/s

2. **Tangential Direction**: The tangential component of the velocity is the compo-
nent perpendicular to the position vector.
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10 CHAPTER 1. COORDINATE SYSTEM

The tangential velocity is the projection of the total velocity perpendicular to the
position vector:

vθ = vx sin(θr)

Substituting the values:

vθ = 86.60 × sin(16◦) ≈ 23.86 m/s

However, since the tangential component is in the clockwise direction (below the
horizontal), it will be negative:

vθ ≈ −23.86 m/s

Step 5: Conclusion
At maximum height:

• The radial component of the velocity is vr ≈ 83.21 m/s.

• The tangential component of the velocity is vθ ≈ −23.86 m/s.

Q4: Express the Vector 3̂i + 4ĵ in Polar Coordinates

Given the vector v⃗ = 3̂i + 4ĵ at the point (1, 1), we express it in polar coordinates.
Magnitude:

|v⃗| =
√

32 + 42 = 5

Angle:

θ = tan−1
(4

3

)
= 53.13◦

Thus, the vector in polar coordinates is:

v⃗ = 5 r̂ at θ = 53.13◦

Q5: Express the Vector 2r̂ in Cartesian Coordinates

The vector 2r̂ represents a radial vector with a magnitude of 2 units in the direction of
r̂. To express this in Cartesian coordinates, we use:

r̂ = cos(θ)̂i + sin(θ)ĵ

For an arbitrary angle θ:

2r̂ = 2(cos(θ)̂i + sin(θ)ĵ) = 2 cos(θ)̂i + 2 sin(θ)ĵ
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1.6. EXERCISES 11

Q6: Express the Position Vector (PV) of a Ball at (1, 2) in Carte-
sian and Polar Coordinates
In Cartesian coordinates, the position vector is:

r⃗ = 1̂i + 2ĵ

In polar coordinates:
r =

√
12 + 22 =

√
5 = 2.236

θ = tan−1
(2

1

)
= 63.43◦

Thus, the position vector in polar coordinates is:

r⃗ = 2.236 r̂ at θ = 63.43◦
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