
Hamilton-Jacobi Equation for Hamilton’s Princi-
pal Function

The Hamilton-Jacobi equation (HJE) for Hamilton’s Principal Func-
tion is a cornerstone in classical mechanics and provides a bridge to quantum
mechanics. Here’s an explanation:

1. Context and Background

In classical mechanics, Hamilton’s Principal Function, S(q1, q2, . . . , qn, t), arises
in the principle of least action. It represents the action along a path connecting
initial and final configurations in phase space.

• Action Principle: The motion of a system can be derived by minimizing
the action

S =

∫
Ldt,

where L is the Lagrangian of the system.

• Hamilton’s formulation of mechanics involves the Hamiltonian H, which
is related to the Lagrangian and describes the energy of the system.

The Hamilton-Jacobi equation is a reformulation of Hamilton’s equations,
where solving S gives a direct path to solving the equations of motion.

2. Hamilton’s Principal Function

S depends on:

• The generalized coordinates qi,

• The time t.

It satisfies the condition:

∂S

∂t
= −H

(
q1, q2, . . . , qn;

∂S

∂q1
,
∂S

∂q2
, . . . ,

∂S

∂qn
; t

)
,

where H is the Hamiltonian expressed as a function of generalized coordinates
qi, their conjugate momenta pi, and time t.

The conjugate momenta are related to S by:

pi =
∂S

∂qi
.
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3. The Hamilton-Jacobi Equation

The Hamilton-Jacobi equation can be written as:

H

(
q1, q2, . . . , qn;

∂S

∂q1
,
∂S

∂q2
, . . . , t

)
+

∂S

∂t
= 0.

This is a partial differential equation (PDE) for S(q, t). Solving this
equation gives the Hamilton’s Principal Function, which encapsulates the dy-
namics of the system.

4. Interpretation

• The solution S(q, t) is equivalent to solving the equations of motion for
the system.

• Once S is known, the generalized momenta pi and trajectories qi(t) can
be determined.

• The HJE reduces the problem of solving a set of coupled second-order
differential equations (Newton’s laws) to solving a first-order PDE.

5. Applications

• Classical Mechanics: Direct determination of motion without explicit
integration of Hamilton’s equations.

• Quantum Mechanics: Forms the basis of Schrödinger’s equation under
certain conditions.

• Geometrical Optics: Related to Fermat’s principle in optics.

• General Relativity: Plays a role in deriving geodesic equations in curved
spacetime.

Hamilton’s Principal Function and Its Derivation

1. Hamilton’s Principal Function as the Action

Hamilton’s Principal Function, S, is defined as the action along a path in the
configuration space:

S(q1, q2, . . . , qn, t) =

∫ t

t1

L(qi, q̇i, t) dt,

where:

• qi are the generalized coordinates,

• q̇i =
dqi
dt are their time derivatives,
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• L is the Lagrangian of the system.

This integral depends on the path taken between initial and final points.

2. Total Differential of S

Taking the total differential of S:

dS =
∂S

∂t
dt+

∑
i

∂S

∂qi
dqi.

3. Relation Between S and the Lagrangian

From the definition of S, we have:

S =

∫ t

t1

Ldt.

Differentiating S with respect to time:

∂S

∂t
= L.

4. Relation Between S and Conjugate Momentum

The conjugate momentum pi is defined as:

pi =
∂L

∂q̇i
.

Using the principle of least action, the variation of the action S leads to
Hamilton’s equations. To find the connection between pi and S, observe the
dependence of S on the coordinates qi. From the total differential of S:

dS =
∑
i

∂S

∂qi
dqi +

∂S

∂t
dt.

Comparing this with the canonical Hamiltonian formulation, we identify:

pi =
∂S

∂qi
.

5. Hamilton-Jacobi Equation

From Hamilton’s equations, the Hamiltonian H is related to S as:

H (qi, pi, t) =
∑
i

piq̇i − L.

Since pi =
∂S
∂qi

, substituting into the expression for H and using ∂S
∂t = −H,

we get:
∂S

∂t
+H

(
qi,

∂S

∂qi
, t

)
= 0.

This is the Hamilton-Jacobi equation, with S encapsulating the dynamics.
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Summary of Key Relationships

1. Hamilton’s Principal Function:

S =

∫
Ldt.

2. Conjugate momentum:

pi =
∂S

∂qi
.

3. Hamilton-Jacobi equation:

∂S

∂t
+H

(
qi,

∂S

∂qi
, t

)
= 0.

Why is Hamilton’s Principal Function Indepen-
dent of q̇i When L Depends on q̇i?

Hamilton’s Principal Function S(qi, t) is independent of q̇i (the generalized ve-
locities), even though the Lagrangian L(qi, q̇i, t) depends on q̇i. Here’s the rea-
soning:

1. Definition of S

Hamilton’s Principal Function is defined as:

S(qi, t) =

∫ t

t1

L(qi, q̇i, t) dt.

This integral is evaluated along a specific trajectory in the configuration
space that satisfies the equations of motion (derived from the principle of least
action). Thus, S is not a general function of qi, q̇i, and t, but instead depends
only on the final generalized coordinates qi and time t, after the trajectory is
determined.

2. Trajectory Dependence on q̇i

The Lagrangian L(qi, q̇i, t) explicitly depends on q̇i. However:

• The trajectory of the system is uniquely determined by the equations of
motion (Euler-Lagrange equations) and the boundary conditions.

• Along this trajectory, q̇i is no longer an independent variable; it is a func-
tion of qi, t, and possibly initial conditions.

Thus, when integrating L along the trajectory, the dependence on q̇i is “ab-
sorbed” into the dependence of S on qi and t.
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3. Reduction to Canonical Coordinates

Hamilton’s Principal Function S is constructed in such a way that it serves as
a generator of the canonical transformation connecting the generalized coordi-
nates qi and their conjugate momenta pi. The conjugate momenta are defined
as:

pi =
∂L

∂q̇i
.

Since q̇i appears only implicitly in S via pi =
∂S
∂qi

, S itself does not depend
explicitly on q̇i.

4. Role of q̇i in the Variational Principle

The dependence of L on q̇i ensures that the equations of motion (Euler-Lagrange
equations) can be derived from the action S:

S =

∫ t2

t1

L(qi, q̇i, t) dt.

Once the equations of motion are solved, the explicit dependence on q̇i van-
ishes because the velocities are determined by the trajectory qi(t).

5. Summary

• Lagrangian Dependence: L depends on q̇i because it describes the
kinetic and potential energies of the system in terms of both positions qi
and velocities q̇i.

• Hamilton’s Principal Function Dependence: S(qi, t) is the inte-
grated action along a physical trajectory. As such, it depends only on
the generalized coordinates qi and time t, not on the generalized velocities
q̇i, which are implicitly accounted for in the trajectory.

Derivation of the Hamilton-Jacobi Equation

We derive the Hamilton-Jacobi Equation (HJE) step by step, explicitly replacing
L with dS

dt .

1. Hamilton’s Principal Function

Hamilton’s Principal Function S(qi, t) is defined as:

S(qi, t) =

∫
Ldt,

where L(qi, q̇i, t) is the Lagrangian. The total time derivative of S is:

dS

dt
= L(qi, q̇i, t).
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2. Hamiltonian Definition

The Hamiltonian is defined as:

H =
∑
i

piq̇i − L,

where:

• pi =
∂L
∂q̇i

is the conjugate momentum,

• q̇i =
dqi
dt is the generalized velocity.

Now, replace L with dS
dt in this definition. The total time derivative of S is:

dS

dt
=

∂S

∂t
+
∑
i

∂S

∂qi
q̇i.

Substituting dS
dt into the Hamiltonian, we get:

H =
∑
i

piq̇i −

(
∂S

∂t
+
∑
i

∂S

∂qi
q̇i

)
.

3. Simplification Using pi =
∂S
∂qi

Since pi =
∂S
∂qi

, the term
∑

i piq̇i cancels with
∑

i
∂S
∂qi

q̇i. This leaves:

H = −∂S

∂t
.

4. Substituting into the Hamiltonian

The Hamiltonian H is a function of qi, pi, and t. Substituting pi = ∂S
∂qi

, we
express H as:

H

(
qi,

∂S

∂qi
, t

)
.

Using the relation H = −∂S
∂t , we obtain:

∂S

∂t
+H

(
qi,

∂S

∂qi
, t

)
= 0.

5. Final Form of the Hamilton-Jacobi Equation

The final form of the Hamilton-Jacobi Equation is:

∂S

∂t
+H

(
qi,

∂S

∂qi
, t

)
= 0,

where:

• S(qi, t) is Hamilton’s Principal Function,

• pi =
∂S
∂qi

.
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6. Summary of Key Steps

1. Start with S(qi, t) =
∫
Ldt.

2. Replace L = dS
dt = ∂S

∂t +
∑

i
∂S
∂qi

q̇i.

3. Substitute into the Hamiltonian definition:

H =
∑
i

piq̇i − L.

4. Cancel terms using pi =
∂S
∂qi

.

5. Arrive at the Hamilton-Jacobi Equation:

∂S

∂t
+H

(
qi,

∂S

∂qi
, t

)
= 0.

Harmonic Oscillator Problem Using the Hamilton-
Jacobi Method

1. The Harmonic Oscillator Hamiltonian

The Hamiltonian of a one-dimensional harmonic oscillator is given by:

H =
p2

2m
+

1

2
mω2q2,

where:

• q: Generalized coordinate,

• p: Conjugate momentum,

• m: Mass of the oscillator,

• ω: Angular frequency of the oscillator.

2. Hamilton-Jacobi Equation

The Hamilton-Jacobi equation (HJE) for Hamilton’s Principal Function S(q, t)
is:

∂S

∂t
+H

(
q,

∂S

∂q

)
= 0.

Substitute H into the equation:

∂S

∂t
+

1

2m

(
∂S

∂q

)2

+
1

2
mω2q2 = 0.
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3. Separation of Variables

Assume a solution of the form:

S(q, t) = W (q)− Et,

whereW (q) is the time-independent part of S, and E is the energy of the system.
Substituting into the HJE:

−∂S

∂t
+

1

2m

(
∂W

∂q

)2

+
1

2
mω2q2 = 0.

Simplify:

E =
1

2m

(
∂W

∂q

)2

+
1

2
mω2q2.

Rearranging gives: (
∂W

∂q

)2

= 2mE −m2ω2q2.

4. Solve for W (q)

Take the square root of both sides:

∂W

∂q
= ±

√
2mE −m2ω2q2.

Integrate:

W (q) =

∫
±
√

2mE −m2ω2q2 dq.

Perform the integration (using standard techniques for a quadratic under
the square root):

W (q) = ±mω

2

(
q

√
2E

mω2
− q2 +

1

ω
arcsin

(√
mω2

2E
q

))
.

5. Hamilton’s Characteristic Function and Motion

The total Hamilton’s Principal Function is:

S(q, t) = W (q)− Et.

From W (q), the momentum is:

p =
∂S

∂q
=

∂W

∂q
= ±

√
2mE −m2ω2q2.
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6. Action-Angle Variables

The Hamilton-Jacobi method naturally introduces action-angle variables for
periodic systems like the harmonic oscillator. The action J is given by:

J =

∮
p dq.

Substitute p =
√

2mE −m2ω2q2:

J =

∫ qmax

−qmax

√
2mE −m2ω2q2 dq.

Perform the integral (this is the area of an ellipse in phase space):

J =
E

ω
.

The angular frequency ω is then directly related to the action.

Summary of Results

1. The energy of the harmonic oscillator:

E =
1

2
mω2q2 +

p2

2m
.

2. The Hamilton-Jacobi equation is solved by:

S(q, t) = W (q)− Et,

where W (q) is derived as above.

3. The system can be described in terms of action-angle variables for periodic
motion.

Logic Behind the Variable Separable Form in the
Hamilton-Jacobi Method

1. The Logic Behind the Separable Form

The chosen separable form for S(q, t):

S(q, t) = W (q)− Et,

is guided by the following considerations:
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a. The Structure of the Hamilton-Jacobi Equation

The Hamilton-Jacobi equation is:

∂S

∂t
+H

(
q,

∂S

∂q

)
= 0.

• H, the Hamiltonian, often depends only on the generalized coordinate q,
the conjugate momentum p, and possibly t.

• A natural way to handle the explicit dependence on t is to separate it from
the spatial variables.

b. Energy Conservation

For systems with a conserved energy E (time-independent Hamiltonians), S(q, t)
can often be expressed as:

S(q, t) = W (q)− Et,

where:

• W (q) is the time-independent part of S,

• E represents the total energy, acting as a separation constant.

This separation reflects the symmetry of the system: the time evolution is
independent of the spatial configuration q.

2. Can Other Variable Separable Forms Be Used?

Yes, other separable forms can be used, but the specific form depends on:

• The structure of the Hamiltonian,

• The nature of the system’s constraints and symmetries.

a. Time-Independent Systems

If H is time-independent, the form S(q, t) = W (q) − Et is natural because t
separates cleanly as the Hamiltonian itself defines E. Any other form would
likely complicate the PDE unnecessarily.

b. Time-Dependent Systems

For time-dependent Hamiltonians H(q, p, t), separable forms such as:

S(q, t) = W (q) + F (t),

might be more appropriate, where F (t) is determined based on the time-dependence
of H. This is seen, for example, in systems with external time-dependent forces.
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c. Multidimensional Systems

In multidimensional systems with separable coordinates q1, q2, . . ., S can be
separated into components:

S(q1, q2, . . . , t) =
∑
i

Wi(qi)− Et,

where Wi(qi) corresponds to the motion in the i-th coordinate.

d. Arbitrary Forms

For systems with more complex constraints, other separable forms might emerge,
but they would generally follow from:

• The symmetries of the system (e.g., spherical, cylindrical),

• The conserved quantities that allow separation (e.g., energy, angular mo-
mentum).

3. Why the Standard Form Works for the Harmonic Oscil-
lator

In the harmonic oscillator:

H =
p2

2m
+

1

2
mω2q2,

• H is time-independent,

• Energy E is conserved.

The form S(q, t) = W (q)− Et leverages these properties:

• t is treated independently due to energy conservation,

• q and p are connected through W (q) and the HJE.

4. Why Not Use Arbitrary Separable Forms?

Other separable forms may be theoretically possible, but:

• They might introduce unnecessary complexity in solving the HJE.

• The standard form S(q, t) = W (q)−Et is chosen because it aligns directly
with conserved quantities (like E) and simplifies the PDE into an ODE
for W (q).
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Summary

• The standard form S(q, t) = W (q)−Et is motivated by the time-independence
of the Hamiltonian and energy conservation.

• Other separable forms are possible but are typically tailored to the sys-
tem’s symmetries, constraints, or time dependence.

• The choice of form is guided by the goal of simplifying the Hamilton-Jacobi
equation while reflecting the physical properties of the system.

Hamilton’s Characteristic Function and Principal
Function

Hamilton’s Characteristic Function and Principal Function are closely related
but have distinct purposes. Here’s a detailed explanation:

1. Hamilton’s Principal Function (S(qi, t))

Hamilton’s Principal Function S(qi, t) is defined as:

S(qi, t) =

∫
Ldt,

where L is the Lagrangian of the system.

Key Characteristics:

• S(qi, t) depends explicitly on the generalized coordinates qi and the time
t.

• It solves the time-dependent Hamilton-Jacobi Equation (HJE):

∂S

∂t
+H

(
qi,

∂S

∂qi
, t

)
= 0,

where H is the Hamiltonian.

• S describes the full dynamics of the system, including time evolution.

2. Hamilton’s Characteristic Function (W (qi))

Hamilton’s Characteristic Function W (qi) is the time-independent version of
S(qi, t). It is used for systems where the Hamiltonian is time-independent.
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Definition:

Hamilton’s Characteristic FunctionW (qi) solves the time-independent Hamilton-
Jacobi Equation:

H

(
qi,

∂W

∂qi

)
= E,

where:

• E is the total energy of the system,

• H(qi, pi) is the Hamiltonian.

Key Characteristics:

• W (qi) depends only on the generalized coordinates qi and constants of
motion (like E).

• It does not involve time t explicitly.

• W describes the geometry of trajectories in phase space rather than their
evolution in time.

3. Relation Between S and W

Hamilton’s Principal Function S(qi, t) and Hamilton’s Characteristic Function
W (qi) are related for systems with time-independent Hamiltonians. In such
cases:

S(qi, t) = W (qi)− Et,

where:

• W (qi) is Hamilton’s Characteristic Function,

• E is the total energy,

• t is time.

This shows that S is a combination of W (qi) and the time-dependent term
−Et.

4. When to Use Each Function

Function When to Use
Hamilton’s Principal Function (S) For solving problems with

time-dependent Hamiltonians (H = H(qi, pi, t)).
Hamilton’s Characteristic Function (W ) For time-independent

Hamiltonians (H = H(qi, pi)).
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5. Example: Harmonic Oscillator

Hamiltonian:

H =
p2

2m
+

1

2
mω2q2.

Time-Independent HJE (for W ):

1

2m

(
∂W

∂q

)2

+
1

2
mω2q2 = E.

Solving this gives W (q), the characteristic function:

W (q) = ±
∫ √

2mE −m2ω2q2 dq.

Time-Dependent HJE (for S):

Using S(q, t) = W (q)− Et, the principal function is:

S(q, t) = ±
∫ √

2mE −m2ω2q2 dq − Et.

6. Summary

• Hamilton’s Principal Function (S): Time-dependent, describes the
full dynamics of the system.

• Hamilton’s Characteristic Function (W ): Time-independent, focuses
on the geometry of trajectories.

They are related via:

S(qi, t) = W (qi)− Et,

for time-independent systems.

Separation of Variables in the Hamilton-Jacobi
Equation

The Hamilton-Jacobi Equation (HJE) is:

∂S

∂t
+H

(
qi,

∂S

∂qi
, t

)
= 0,

where:

• S(qi, t) is Hamilton’s Principal Function,
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• H is the Hamiltonian.

For time-independent systems, the HJE simplifies to:

H

(
qi,

∂S

∂qi

)
= E,

where E is the total energy of the system.

1. Separation of Variables in the HJE

Separation of variables is a method to solve the HJE by assuming S can be
expressed as a sum of functions, each depending on a single variable.

Assumption:

For a system with n generalized coordinates q1, q2, . . . , qn, assume:

S(q1, q2, . . . , qn, t) = W (q1, q2, . . . , qn)− Et,

where:

• W (q1, q2, . . . , qn) is Hamilton’s Characteristic Function,

• E is the total energy.

Further assume W can be written as a sum:

W (q1, q2, . . . , qn) =

n∑
i=1

Wi(qi),

where Wi depends only on qi.

Substitution into the Time-Independent HJE:

Substitute S = W − Et into the HJE:

H

(
qi,

∂S

∂qi

)
= E.

If H is separable, this becomes:

n∑
i=1

Hi

(
qi,

∂Wi

∂qi

)
= E,

where Hi depends only on qi and
∂Wi

∂qi
.
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Separation:

Each term Hi is equated to a constant αi, such that:

Hi

(
qi,

∂Wi

∂qi

)
= αi,

and:
n∑

i=1

αi = E.

This transforms the HJE into n simpler, independent equations.

2. Cyclic (Ignorable) Coordinates

A cyclic coordinate (or ignorable coordinate) is a coordinate qj that does not
appear explicitly in the Hamiltonian H. This property simplifies the HJE.

Case of a Cyclic Coordinate:

If qj is cyclic:
H = H(q1, q2, . . . , pj , . . . ),

and pj (the conjugate momentum) is constant:

pj =
∂S

∂qj
= constant.

Impact on Separability:

For a cyclic coordinate qj , the corresponding term in W (qi) is linear in qj :

Wj(qj) = pjqj .

This simplifies the separation of variables. The total function W becomes:

W (q1, q2, . . . ) = pjqj +
∑
i ̸=j

Wi(qi).

3. Example: Particle in a Central Potential

Hamiltonian:

H =
p2r
2m

+
p2ϕ

2mr2
+ V (r).

Cyclic Coordinate:

• ϕ is cyclic because it does not appear in V (r).

• Thus:

pϕ =
∂S

∂ϕ
= constant.
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Separation of Variables:

Assume:
S(r, ϕ, t) = Wr(r) +Wϕ(ϕ)− Et.

Substitute into the HJE and separate Wr(r) and Wϕ(ϕ):

p2r
2m

+
p2ϕ

2mr2
+ V (r) = E.

This leads to:

1. An equation for Wϕ(ϕ) = pϕϕ,

2. A radial equation for Wr(r).

4. Summary of Key Steps

1. Separability in the HJE:

• Assume S(qi, t) = W (qi)− Et.

• Further assume W (qi) =
∑n

i=1 Wi(qi).

• Substitute into the HJE and separate into n independent equations.

2. Cyclic Coordinates:

• A cyclic coordinate qj does not appear in H, making pj constant.

• For a cyclic coordinate, Wj(qj) = pjqj , simplifying the solution.

3. Applications:

• This method is widely used for systems with symmetry, such as cen-
tral force problems, harmonic oscillators, and planetary motion.

Action-Angle Variables

The action-angle variables are a set of canonical coordinates used to describe
systems with periodic or quasi-periodic motion, such as harmonic oscillators,
planetary orbits, or particles in central potentials. These variables simplify the
dynamics of such systems.

1. Key Concepts

(a) Action Variable (Ji)

• The action variable is a conserved quantity associated with periodic
motion.
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• It is defined as the integral of the conjugate momentum pi over one com-
plete cycle of its periodic motion:

Ji =

∮
pi dqi,

where qi is the generalized coordinate and pi is the conjugate momentum.

• Ji is constant for integrable systems.

(b) Angle Variable (θi)

• The angle variable represents the phase of the motion and changes lin-
early with time.

• It evolves as:
θi(t) = θi0 + ωit,

where ωi =
∂H
∂Ji

is the angular frequency, and H is the Hamiltonian.

2. Why Use Action-Angle Variables?

• Simplification: For integrable systems, the equations of motion in action-
angle variables are simple. The Hamiltonian H depends only on the action
variables:

H = H(J1, J2, . . . ).

The angle variables evolve linearly:

θ̇i = ωi =
∂H

∂Ji
.

• Periodic Systems: These variables are ideal for systems where motion is
periodic or quasi-periodic, as the angle variable θi captures the periodicity.

• Canonical Transformation: The transformation from (qi, pi) to (Ji, θi)
is canonical, preserving the structure of Hamilton’s equations.

3. How Are They Defined?

(a) Action Variable (Ji)

The action variable Ji is the area enclosed by the trajectory in phase space for
the i-th degree of freedom:

Ji =

∮
pi dqi.
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(b) Angle Variable (θi)

The angle variable θi parameterizes the position within the periodic trajectory.
It is defined such that:

θi =
∂W

∂Ji
,

where W is the generating function of the canonical transformation to action-
angle coordinates.

4. Example: Harmonic Oscillator

Hamiltonian:

H =
p2

2m
+

1

2
mω2q2.

(a) Action Variable (J):

The trajectory in phase space is an ellipse. The action variable is the area
enclosed by this ellipse:

J =

∮
p dq.

Using energy conservation:

p =
√

2mE −m2ω2q2,

we compute J :

J =

∫ qmax

−qmax

√
2mE −m2ω2q2 dq =

E

ω
.

(b) Angle Variable (θ):

The angle variable evolves linearly with time:

θ(t) = ωt+ θ0,

where ω is the angular frequency.

5. Applications

• Perturbation Theory: Used to study small deviations from integrable
systems.

• Celestial Mechanics: Describes planetary orbits in a central force field.

• Quantum Mechanics: Quantization of the action variable Ji leads to
quantum conditions:

Ji = nih, ni ∈ Z.

19



6. Summary

• Action Variables (Ji): Conserved quantities that are integrals of motion
for periodic systems.

• Angle Variables (θi): Periodic variables that describe the phase of the
motion.

• Action-angle variables simplify the study of periodic and quasi-periodic
systems by reducing the dynamics to simple linear evolution in the angle
variables.
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