
Experiment: Dynamics of a Damped Harmonic

Oscillator

Aim

To develop a Python program using solve ivp to solve and visualize the dynamics of a
damped harmonic oscillator (DSHO), and to study the effect of damping on displacement,
velocity, phase portrait.

Apparatus Required

Computer with Python 3 and the libraries NumPy, Matplotlib, and SciPy installed.

Theory

A mass–spring–dashpot system follows

mẍ+ c ẋ+ k x = 0,

where m is the mass, k the spring constant, and c the viscous damping coefficient. Define
the natural frequency and damping ratio

ωn =

√
k

m
, ζ =

c

2
√
km

.

Behavior:

• ζ = 0: Undamped SHO (pure sinusoid).

• 0 < ζ < 1: Underdamped (decaying oscillation).

• ζ = 1: Critically damped (fastest non-oscillatory return).

• ζ > 1: Overdamped (slow non-oscillatory return).

For the underdamped case, the solution is

x(t) = e−ζωnt
(
C1 cosωdt+ C2 sinωdt

)
, ωd = ωn

√
1− ζ2.

The total mechanical energy E(t) = 1
2
mẋ2 + 1

2
kx2 decays monotonically when c > 0.

For numerical integration, write the first-order system

ẋ = v, v̇ = − c

m
v − k

m
x,

and solve with solve ivp.

1



Python Program (Damped SHO)

1 '' '' ''
2 Damped Harmonic Oscillator

3 --------------------------

4 m x'' + c x' + k x = 0 -> x' = v, v' = -(c/m) v - (k/m) x

5

6 Plots:

7 x(t) phase portrait (v vs x)

8 '' '' ''
9

10 import numpy as np

11 import matplotlib.pyplot as plt

12 from scipy.integrate import solve_ivp

13

14 # Parameters (edit here)

15 m = 1.0 # mass

16 k = 4.0 # stiffness

17 c = 0.6 # damping coefficient (set 0 for undamped)

18 x0 = 1.0 # initial displacement

19 v0 = 0.0 # initial velocity

20 t_span = (0.0, 20.0)

21 t_eval = np.linspace (*t_span , 3000)

22

23 # Derived quantities

24 omega_n = np.sqrt(k/m)

25 zeta = c/(2*np.sqrt(k*m))

26 print(f''omega_n = {omega_n :.4f} rad/s, zeta = {zeta :.4f}'')
27

28 # ODE system: y = [x, v]

29 def dsho(t, y):

30 x, v = y

31 return [v, -(c/m)*v - (k/m)*x]

32

33 # Solve

34 sol = solve_ivp(dsho , t_span , [x0 , v0], t_eval=t_eval , rtol=1e-9,

atol=1e-12)

35 t = sol.t

36 x = sol.y[0]

37 v = sol.y[1]

38

39 # Energies

40 T = 0.5*m*v**2

41 U = 0.5*k*x**2

42 E = T + U

43

44 # Plots

45 plt.figure(figsize =(7 ,4))

46 plt.plot(t, x, lw =1.6)

47 plt.xlabel('t (s)'); plt.ylabel('x(t)')
48 plt.title('Displacement vs Time ')
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49 plt.grid(True); plt.tight_layout ()

50

51 plt.figure(figsize =(7 ,4))

52 plt.plot(t, v, lw =1.6)

53 plt.xlabel('t (s)'); plt.ylabel('v(t)')
54 plt.title('Velocity vs Time ')
55 plt.grid(True); plt.tight_layout ()

56

57 plt.figure(figsize =(6 ,6))

58 plt.plot(x, v, lw =1.6)

59 plt.xlabel('x'); plt.ylabel('v')
60 plt.title('Phase Portrait (v vs x)')
61 plt.grid(True); plt.axis('equal '); plt.tight_layout ()

62

63 plt.figure(figsize =(7 ,4))

64 plt.plot(t, E, lw=1.8, label='Total E')
65 plt.plot(t, T, lw=1.0, ls='--', label='Kinetic T')
66 plt.plot(t, U, lw=1.0, ls='--', label='Potential U')
67 plt.xlabel('t (s)'); plt.ylabel('Energy ')
68 plt.title('Energy vs Time ')
69 plt.grid(True); plt.legend (); plt.tight_layout ()

70

71 plt.show()

Listing 1: Damped harmonic oscillator solved with solve ivp.

Procedure

1. Specify m, k, c and initial conditions (x0, v0).

2. Formulate the first-order system and integrate with solve ivp.

3. Plot x(t) and the phase portrait (v vs x).

4. Vary c to observe underdamped, critically damped, and overdamped regimes.

Observations and Results

With m = 1, k = 4 (ωn = 2 rad/s) and c = 0.6,

ζ =
c

2
√
km

=
0.6

4
= 0.15 (underdamped).

The displacement and velocity exhibit decaying oscillations; the phase portrait spirals
into the origin. The total energy decays monotonically due to damping.

Conclusion

The numerical solution confirms the expected behavior of a damped harmonic oscillator:
for 0 < ζ < 1 the motion is an exponentially decaying sinusoid, the phase trajectory is a
spiral, and total mechanical energy decreases with time.
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Figure 1: Displacement x(t) vs time for damped SHO (ζ = 0.15).

Figure 2: Phase portrait (v vs x) showing inward spiral.

Precautions

1. Choose ∆t (via dense t eval) fine enough to resolve oscillations.

2. Verify parameters give the intended regime (ζ < 1,= 1, > 1).

3. In the undamped limit (c → 0), check that energy remains constant numerically.
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