Experiment: Dynamics of a Damped Harmonic
Oscillator

Aim

To develop a Python program using solve_ivp to solve and visualize the dynamics of a
damped harmonic oscillator (DSHO), and to study the effect of damping on displacement,
velocity, phase portrait.

Apparatus Required

Computer with Python 3 and the libraries NumPy, Matplotlib, and SciPy installed.

Theory
A mass—spring—dashpot system follows
mi+ct+kx =0,

where m is the mass, k the spring constant, and ¢ the viscous damping coefficient. Define
the natural frequency and damping ratio

O Ve (= N/
Behavior:
e (=0: Undamped SHO (pure sinusoid).
e 0 < (< 1: Underdamped (decaying oscillation).
e (= 1: Critically damped (fastest non-oscillatory return).
e (> 1: Overdamped (slow non-oscillatory return).

For the underdamped case, the solution is

z(t) = e~ S¥nt <01 cos wgt + Cy sin wdt>, Wy = wpy/1 — C2.

The total mechanical energy E(t) = 3mi? + 1ka? decays monotonically when ¢ > 0.

For numerical integration, write the first-order system

and solve with solve_ivp.

Python Program (Damped SHO)

Plots:
x(t)

phase portrait (v

import numpy as np
import matplotlib.pyplot as
from scipy.integrate import

-(c/m) v - (k/m) x

plt
solve_ivp

Parameters (edit here)
m = 1.0 # mass
k=4.0 # stiffness
c = 0.6 # damping coefficient (set 0 for undamped)
x0 = 1.0 # initial displacement
vO = 0.0 # initial velocity
t_span = (0.0, 20.0)
t_eval = np.linspace(*t_span, 3000)
Derived quantities
omega_n = np.sqrt(k/m)
zeta = c/(2xnp.sqrt (k*m))
print (f''omega_n = {omega_n:.4f} rad/s, zeta = {zeta:.4f}'"')
ODE system: y = [x, v]
def dsho(t, y):
X, Vv =3
return [v, -(c/m)*v - (k/m)*x]
Solve
sol = solve_ivp(dsho, t_span, [x0, vO], t_eval=t_eval, rtol=1e-9,

atol=1e-12)
sol.t
sol.y[0]
sol.y[1]

< M
o

Energies
0.5*m*v**2
O0.5xk*x**2
T+ U

M a3 #
non

Plots
plt.figure(figsize=(7,4))
plt.plot(t, x, 1lw=1.6)
plt.xlabel ('t (s)');
plt

plt.ylabel ('x(t)"')
.title('Displacement vs Time')

plt.grid(True); plt.tight_layout ()

plt.figure(figsize=(7,4))

plt.plot(t, v, 1lw=1.6)

plt.xlabel ('t (s)'); plt.ylabel('v(t)")
plt.title('Velocity vs Time')
plt.grid(True); plt.tight_layout ()

plt.figure(figsize=(6,6))

plt.plot(x, v, lw=1.6)

plt.xlabel('x'); plt.ylabel('v')

plt.title('Phase Portrait (v vs x)')

plt.grid(True); plt.axis('equal'); plt.tight_layout ()

plt.figure(figsize=(7,4))

plt.plot(t, E, 1lw=1.8, label='Total E')

plt.plot(t, T, lw=1.0, 1ls='--', label='Kinetic T')
plt.plot(t, U, 1lw=1.0, 1ls='--', label='Potential U')
plt.xlabel ('t (s)'); plt.ylabel('Energy')

plt.title ('Energy vs Time')

plt.grid(True); plt.legend(); plt.tight_layout ()

plt.show ()

Listing 1: Damped harmonic oscillator solved with solve_ivp.

Procedure

1. Specify m, k, ¢ and initial conditions (zg, vg).
2. Formulate the first-order system and integrate with solve_ivp.
3. Plot x(t) and the phase portrait (v vs x).

4. Vary c to observe underdamped, critically damped, and overdamped regimes.

Observations and Results

With m =1, k=4 (v, = 2 rad/s) and ¢ = 0.6,

c 0.6
= = — =0.15 (underdamped).
SREN TR | bed

The displacement and velocity exhibit decaying oscillations; the phase portrait spirals
into the origin. The total energy decays monotonically due to damping.

Conclusion

The numerical solution confirms the expected behavior of a damped harmonic oscillator:
for 0 < ¢ < 1 the motion is an exponentially decaying sinusoid, the phase trajectory is a
spiral, and total mechanical energy decreases with time.

Simple Harmonic Oscillator: Displacement vs Time

1.0 — x(t)
0.8 A
0.6
0.4

0.2 A

Displacement (m)

0.0 A

—0.2 A1

-0.4

o
N
N
o 4
[o2)
=
o

Time (s)

Figure 1: Displacement z(t) vs time for damped SHO (¢ = 0.15).

Phase Portrait of Harmonic Oscillator

v (m/s)

—1.0 1

—1.5 4

Figure 2: Phase portrait (v vs) showing inward spiral.

Precautions
1. Choose At (via dense t_eval) fine enough to resolve oscillations.
2. Verify parameters give the intended regime ((< 1,=1,> 1).

3. In the undamped limit (¢ — 0), check that energy remains constant numerically.

