

Experiment Title: Comparison of Measurement Tools

Objective

1. To compare the accuracy and precision of measurements using a screw gauge and a Vernier caliper by measuring the dimensions of a small object.
2. To compare the accuracy and precision of measurements using a Vernier caliper and a meter scale by measuring the dimensions of a larger object.

Apparatus Required

- Screw Gauge
- Vernier Caliper
- Meter Scale
- Small object (e.g., a small metallic sphere or wire)
- Larger object (e.g., a rod or block)

Theory

1. Screw Gauge:

- Least Count = Pitch/Number of divisions on the circular scale.
- Measures small dimensions like thickness with high precision (usually 0.01 mm).

2. Vernier Caliper:

- Least Count = (Value of one main scale division - Value of one vernier scale division).
- Measures internal, external dimensions, and depth (typically precise to 0.1 mm).

3. Meter Scale:

- Least Count = 1 mm.
- Measures larger dimensions with lower precision.

Procedure

Part A: Comparing Screw Gauge and Vernier Caliper

1. Measure the diameter of the small object (e.g., a metallic sphere) using the screw gauge:
 - Note the pitch and least count of the screw gauge.

- Record the readings of the main scale and circular scale.

2. Measure the same diameter using the Vernier caliper:

- Note the least count of the Vernier caliper.
- Record the main scale and Vernier scale readings.

Part B: Comparing Vernier Caliper and Meter Scale

1. Measure the length of the larger object (e.g., a metallic rod) using the Vernier caliper:
 - Record the main scale and Vernier scale readings.
2. Measure the same length using the meter scale:
 - Record the readings directly in centimeters or millimeters.

Observations

Part A: Screw Gauge vs Vernier Caliper

Instrument	Least Count	Reading (mm)	Error	Final Measurement (mm)
Screw Gauge	0.01 mm			
Vernier Caliper	0.1 mm			

Part B: Vernier Caliper vs Meter Scale

Instrument	Least Count	Reading (mm)	Error	Final Measurement (mm)
Vernier Caliper	0.1 mm			
Meter Scale	1 mm			

Calculations

- Least count calculations for the screw gauge and Vernier caliper.
- Error analysis and comparison of precision.

1 Error Analysis

For a set of measurements we estimate the error of the measured value using standard deviation σ which is nothing but

$$\sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2} \quad (1)$$

1.1 Error associated with measurement using Vernier Calipers

....

1.2 Error associated with measurement using Screw Gauge

Result

1. **For small object:** The screw gauge provides higher precision compared to the Vernier caliper for measuring small dimensions.
2. **For larger object:** The Vernier caliper provides better precision compared to the meter scale.

Conclusion

- Screw gauge is more precise for smaller objects, while the Vernier caliper is versatile for medium dimensions.
- Meter scales are less precise and suitable only for approximate measurements of larger objects.

Precautions

- Avoid parallax error while taking readings.
- Ensure zero error correction for both screw gauge and Vernier caliper.
- Handle the instruments carefully to avoid damage.