

Differential and Total Scattering Cross Section

1. Basic Idea

When a beam of particles is sent towards a scattering center, each particle moves under a central force. Some particles go straight (large b), and some are deflected (small b).

Let:

$$b = \text{impact parameter}, \quad \Theta = \text{scattering angle}.$$

A small range b to $b + db$ corresponds to scattering into a small range of angles Θ to $\Theta + d\Theta$.

—

2. Area relation

For the incident beam, particles that have impact parameters between b and $b + db$ fall within a ring of area

$$dA = 2\pi b db.$$

These particles are scattered into a cone of solid angle

$$d\Omega = 2\pi \sin \Theta d\Theta.$$

Since the number of particles scattered must be the same,

$$(\text{number in annulus}) = (\text{number in cone}).$$

Hence,

$$2\pi b db = \frac{d\sigma}{d\Omega} (2\pi \sin \Theta d\Theta).$$

—

3. Differential scattering cross section

Simplify the above equation:

$$\boxed{\frac{d\sigma}{d\Omega} = \frac{b}{\sin \Theta} \left| \frac{db}{d\Theta} \right|}.$$

This is the general formula for any central force.

—

4. Inverse-square (Coulomb or Gravitational) force

For force $F = -\frac{k}{r^2}$, we know from orbit theory:

$$\Theta = 2 \arctan \left(\frac{k}{mbv_\infty^2} \right),$$

where

$$v_\infty = \text{velocity of particle at infinity}.$$

Now invert this to get b in terms of Θ :

$$b = \frac{k}{mv_\infty^2} \cot \left(\frac{\Theta}{2} \right).$$

—

5. Derive differential cross section

Differentiate b with respect to Θ :

$$\frac{db}{d\Theta} = -\frac{k}{2mv_\infty^2} \csc^2\left(\frac{\Theta}{2}\right).$$

Substitute in the general formula:

$$\frac{d\sigma}{d\Omega} = \frac{b}{\sin \Theta} \left| \frac{db}{d\Theta} \right|.$$

After simplification:

$$\boxed{\frac{d\sigma}{d\Omega} = \left(\frac{k}{2mv_\infty^2}\right)^2 \frac{1}{\sin^4(\Theta/2)}}.$$

This is the **Rutherford Scattering Formula**.

6. Total cross section

The total scattering cross section is the total area that collects all scattered particles:

$$\sigma_{\text{total}} = \int \frac{d\sigma}{d\Omega} d\Omega = \int_0^\pi \frac{d\sigma}{d\Omega} 2\pi \sin \Theta d\Theta.$$

For $1/r^2$ forces, $\frac{d\sigma}{d\Omega} \propto \frac{1}{\sin^4(\Theta/2)}$, so the integral diverges at small Θ (small angles).

That means the total cross section is **infinite**.

In real experiments, there is a minimum measurable angle Θ_0 , and we only count scattering for $\Theta > \Theta_0$.

Then,

$$\sigma(\Theta > \Theta_0) = \int_{\Theta_0}^\pi \frac{d\sigma}{d\Omega} 2\pi \sin \Theta d\Theta = \pi \left(\frac{k}{mv_\infty^2}\right)^2 \cot^2\left(\frac{\Theta_0}{2}\right).$$

7. Summary

Quantity	Formula
Deflection angle	$\Theta = 2 \arctan \frac{k}{mbv_\infty^2}$
Differential cross section	$\frac{d\sigma}{d\Omega} = \left(\frac{k}{2mv_\infty^2}\right)^2 \frac{1}{\sin^4(\Theta/2)}$
Partial cross section ($\Theta > \Theta_0$)	$\sigma(\Theta > \Theta_0) = \pi \left(\frac{k}{mv_\infty^2}\right)^2 \cot^2\left(\frac{\Theta_0}{2}\right)$
Total cross section (ideal $1/r^2$)	Divergent (infinite)

Note: In real experiments, very small angles cannot be measured, so the total cross section is always finite in practice.

Scattering in a Central Force Field

Differential and Total Scattering Cross Sections (Classical, Central Force)

A. Kinematics and Definitions

Consider a monoenergetic beam of particles with incident speed v_∞ and number flux J (number per unit area per unit time) incident on a scattering center at the origin. Let b be the impact parameter and Θ the scattering (deflection) angle between the incoming and outgoing asymptotes. Because the force is central, the motion is planar and azimuthally symmetric.

Scattering cross section. The *differential cross section* $d\sigma/d\Omega$ is defined by

$$\frac{dN}{dt} = J \frac{d\sigma}{d\Omega} d\Omega,$$

where dN/dt is the rate of particles scattered into the solid angle element $d\Omega = \sin \Theta d\Theta d\phi$ about the direction (Θ, ϕ) .

B. Mapping annulus in b to ring in solid angle

The number of incident trajectories with impact parameters between b and $b + db$ that hit the target per unit time is

$$\frac{dN}{dt} = J (2\pi b db),$$

since $2\pi b db$ is the area of the annulus in impact-parameter space.

Axial symmetry implies that all such trajectories scatter into a ring of polar angles between Θ and $\Theta + d\Theta$, spanning the full azimuth $0 \leq \phi < 2\pi$, hence

$$d\Omega = 2\pi \sin \Theta d\Theta.$$

Equating the two expressions for dN/dt gives

$$J (2\pi b db) = J \frac{d\sigma}{d\Omega} (2\pi \sin \Theta d\Theta),$$

and therefore the *general classical formula for central forces*:

$$\frac{d\sigma}{d\Omega} = \frac{b}{\sin \Theta} \left| \frac{db}{d\Theta} \right|.$$

(1)

This is purely kinematical; the dynamics enter through the functional relation $b \mapsto \Theta(b)$ determined by the force law.

C. Dynamics: $\Theta(b)$ from the trajectory

Energy and angular momentum conservation give

$$E = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + V(r), \quad L = mr^2\dot{\theta} = mv_\infty b.$$

Eliminating time,

$$\theta_0(b) = \int_{r_{\min}}^{\infty} \frac{L dr}{mr^2 \sqrt{2(E - V(r)) - \frac{L^2}{mr^2}}}, \quad \Theta(b) = \pi - 2\theta_0(b).$$

Once $\Theta(b)$ is known (or inverted to $b(\Theta)$), insert $b(\Theta)$ in (1) to obtain $d\sigma/d\Omega$.

D. Example: Inverse-square (Rutherford) scattering

For $F(r) = -k/r^2$ (repulsive Coulomb or attractive gravitational with suitable sign conventions), the unbound orbit is a hyperbola,

$$r(\theta) = \frac{p}{1 + e \cos \theta}, \quad p = \frac{L^2}{mk}, \quad e = \sqrt{1 + \frac{2EL^2}{mk^2}} = \sqrt{1 + \frac{m^2 b^2 v_\infty^4}{k^2}}.$$

The asymptote satisfies $1 + e \cos \theta_\infty = 0 \Rightarrow \cos \theta_\infty = -1/e$, and the deflection angle is

$$\Theta = \pi - 2\theta_\infty = 2 \sin^{-1} \left(\frac{1}{e} \right) = 2 \arctan \left(\frac{k}{mbv_\infty^2} \right).$$

Inverting, one gets the impact parameter as a function of Θ :

$$b(\Theta) = \frac{k}{mv_\infty^2} \cot \left(\frac{\Theta}{2} \right). \quad (2)$$

Then

$$\frac{db}{d\Theta} = -\frac{k}{2mv_\infty^2} \csc^2 \left(\frac{\Theta}{2} \right), \quad \frac{b}{\sin \Theta} \left| \frac{db}{d\Theta} \right| = \left(\frac{k}{2mv_\infty^2} \right)^2 \frac{1}{\sin^4(\Theta/2)}.$$

Hence the *Rutherford differential cross section*:

$$\frac{d\sigma}{d\Omega} = \left(\frac{k}{2mv_\infty^2} \right)^2 \frac{1}{\sin^4(\Theta/2)}. \quad (3)$$

E. Total vs. partial (integrated) cross sections

Total cross section. By definition,

$$\sigma_{\text{tot}} = \int_{4\pi} \frac{d\sigma}{d\Omega} d\Omega = \int_0^{2\pi} d\phi \int_0^\pi \frac{d\sigma}{d\Omega} \sin \Theta d\Theta.$$

For the Rutherford law (3), the integrand behaves at small angles as $\frac{d\sigma}{d\Omega} \sim \Theta^{-4}$ and $d\Omega \sim \Theta d\Theta d\phi$, so the integral diverges like $\int^{\Theta_{\min}} \Theta^{-3} d\Theta$. *Conclusion: the total classical cross section for a pure $1/r^2$ force is infrared divergent* (it is dominated by arbitrarily small deflection angles). Physically one introduces a cutoff (screening length, finite beam size, or minimum resolvable scattering angle).

Partial cross section above an angle cut. Define the *integrated* (or partial) cross section for deflections larger than a fixed angle $\Theta_0 > 0$:

$$\sigma(\Theta \geq \Theta_0) = \int_{\Theta_0}^{\pi} \int_0^{2\pi} \frac{d\sigma}{d\Omega} \sin \Theta \, d\phi \, d\Theta.$$

Using (2), there is a simple geometric identity:

$$\sigma(\Theta \geq \Theta_0) = \pi b(\Theta_0)^2 = \pi \left(\frac{k}{mv_\infty^2} \cot \frac{\Theta_0}{2} \right)^2.$$

Equivalently, inserting (3) and integrating,

$$\sigma(\Theta \geq \Theta_0) = \int_{\Theta_0}^{\pi} 2\pi \left(\frac{k}{2mv_\infty^2} \right)^2 \frac{\sin \Theta \, d\Theta}{\sin^4(\Theta/2)} = \pi \left(\frac{k}{mv_\infty^2} \right)^2 \cot^2 \left(\frac{\Theta_0}{2} \right).$$

This finite result is what is compared with experiments when a detector has finite angular resolution or when screening suppresses very small-angle deflections.

F. Finite-range potentials

For short-range central potentials (e.g. hard sphere of radius a , or Yukawa $V(r) \propto e^{-\lambda r}/r$), the small-angle divergence is absent and the *total* cross section is finite:

$$\sigma_{\text{tot}} = \int_{4\pi} \frac{d\sigma}{d\Omega} \, d\Omega < \infty.$$

As a simple example, for a hard sphere, $b \leq a$ and $\sigma_{\text{tot}} = \pi a^2$.

G. Summary

- General formula (central forces): $\frac{d\sigma}{d\Omega} = \frac{b}{\sin \Theta} \left| \frac{db}{d\Theta} \right|$.
- Inverse-square (Rutherford): $\frac{d\sigma}{d\Omega} = \left(\frac{k}{2mv_\infty^2} \right)^2 \frac{1}{\sin^4(\Theta/2)}$.
- Total cross section for pure $1/r^2$: *diverges*; use an angular cutoff Θ_0 or physical screening. Then $\sigma(\Theta \geq \Theta_0) = \pi \left(\frac{k}{mv_\infty^2} \right)^2 \cot^2 \left(\frac{\Theta_0}{2} \right)$.

1. Setup

A particle of mass m moves under a central potential $V(r)$ such that $V(r) \rightarrow 0$ as $r \rightarrow \infty$. It approaches the scattering center from infinity with speed v_∞ and impact parameter b .

2. Constants of motion

$$E = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + V(r), \quad L = mr^2\dot{\theta}.$$

At infinity,

$$E = \frac{1}{2}mv_\infty^2, \quad L = mv_\infty b.$$

3. Relation between r and θ

Using energy conservation,

$$\dot{r}^2 = \frac{2}{m}(E - V(r)) - \frac{L^2}{m^2 r^2}, \quad \dot{\theta} = \frac{L}{mr^2}.$$

Hence

$$\frac{d\theta}{dr} = \frac{L/(mr^2)}{\sqrt{\frac{2}{m}(E - V(r)) - \frac{L^2}{m^2 r^2}}},$$

and the angle from infinity to the point of closest approach r_{\min} is

$$\theta_0 = \int_{r_{\min}}^{\infty} \frac{L dr}{mr^2 \sqrt{2(E - V(r)) - L^2/(mr^2)}}.$$

4. Deflection (scattering) angle

Because the trajectory is symmetric,

$$\Theta = \pi - 2\theta_0$$

is the total scattering angle.

5. Inverse-square law $F(r) = -\frac{k}{r^2}$

For this potential, the unbound orbit ($e > 1$) satisfies

$$r(\theta) = \frac{p}{1 + e \cos \theta}, \quad p = \frac{L^2}{mk}, \quad e = \sqrt{1 + \frac{2EL^2}{mk^2}}.$$

As $r \rightarrow \infty$, $1 + e \cos \theta_\infty = 0$ so $\cos \theta_\infty = -1/e$. Hence

$$\Theta = \pi - 2\theta_\infty = 2 \sin^{-1} \left(\frac{1}{e} \right) = 2 \arctan \left(\frac{k}{mbv_\infty^2} \right).$$

6. Differential cross section (Rutherford formula)

The impact parameter and scattering angle are related by

$$b = \frac{k}{mv_\infty^2} \cot \left(\frac{\Theta}{2} \right).$$

Thus,

$$\frac{d\sigma}{d\Omega} = \frac{b}{\sin \Theta} \left| \frac{db}{d\Theta} \right| = \left(\frac{k}{2mv_\infty^2} \right)^2 \frac{1}{\sin^4 \left(\frac{\Theta}{2} \right)}.$$

7. Summary

Quantity	Expression	Meaning
Impact parameter	$b = \frac{L}{mv_\infty}$	perpendicular offset
Closest distance	$r_{\min} = \frac{p}{1+e}$	point of closest approach
Eccentricity	$e = \sqrt{1 + \frac{b^2 v_\infty^4 m^2}{k^2}}$	orbit shape parameter
Deflection angle	$\Theta = 2 \arctan \frac{k}{mbv_\infty^2}$	total deviation
Cross section	$\frac{d\sigma}{d\Omega} = \left(\frac{k}{2mv_\infty^2} \right)^2 \frac{1}{\sin^4(\Theta/2)}$	Rutherford law