
Differential and Total Scattering Cross Section

1. Basic Idea

When a beam of particles is sent towards a scattering center, each particle moves under
a central force. Some particles go straight (large b), and some are deflected (small b).

Let:
b = impact parameter, Θ = scattering angle.

A small range b to b + db corresponds to scattering into a small range of angles Θ to
Θ + dΘ.

—

2. Area relation

For the incident beam, particles that have impact parameters between b and b + db fall
within a ring of area

dA = 2πb db.

These particles are scattered into a cone of solid angle

dΩ = 2π sinΘ dΘ.

Since the number of particles scattered must be the same,

(number in annulus) = (number in cone).

Hence,

2πb db =
dσ

dΩ
(2π sinΘ dΘ).

—

3. Differential scattering cross section

Simplify the above equation:

dσ

dΩ
=

b

sinΘ

∣∣∣ db
dΘ

∣∣∣.
This is the general formula for any central force.

—

4. Inverse-square (Coulomb or Gravitational) force

For force F = − k

r2
, we know from orbit theory:

Θ = 2 arctan
( k

mbv2∞

)
,

where
v∞ = velocity of particle at infinity.

Now invert this to get b in terms of Θ:

b =
k

mv2∞
cot

(Θ
2

)
.

—
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5. Derive differential cross section

Differentiate b with respect to Θ:

db

dΘ
= − k

2mv2∞
csc2

(Θ
2

)
.

Substitute in the general formula:

dσ

dΩ
=

b

sinΘ

∣∣∣ db
dΘ

∣∣∣.
After simplification:

dσ

dΩ
=

( k

2mv2∞

)2 1

sin4(Θ/2)
.

This is the Rutherford Scattering Formula.
—

6. Total cross section

The total scattering cross section is the total area that collects all scattered particles:

σtotal =

∫
dσ

dΩ
dΩ =

∫ π

0

dσ

dΩ
2π sinΘ dΘ.

For 1/r2 forces,
dσ

dΩ
∝ 1

sin4(Θ/2)
, so the integral diverges at small Θ (small angles).

That means the total cross section is infinite.
In real experiments, there is a minimum measurable angle Θ0, and we only count

scattering for Θ > Θ0.
Then,

σ(Θ > Θ0) =

∫ π

Θ0

dσ

dΩ
2π sinΘ dΘ = π

( k

mv2∞

)2

cot2
(Θ0

2

)
.

—

7. Summary

Quantity Formula

Deflection angle Θ = 2 arctan
k

mbv2∞

Differential cross section
dσ

dΩ
=

( k

2mv2∞

)2 1

sin4(Θ/2)

Partial cross section (Θ > Θ0) σ(Θ > Θ0) = π
( k

mv2∞

)2

cot2
(Θ0

2

)
Total cross section (ideal 1/r2) Divergent (infinite)

Note: In real experiments, very small angles cannot be measured, so the total cross
section is always finite in practice.
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Scattering in a Central Force Field

Differential and Total Scattering Cross Sections (Clas-

sical, Central Force)

A. Kinematics and Definitions

Consider a monoenergetic beam of particles with incident speed v∞ and number flux J
(number per unit area per unit time) incident on a scattering center at the origin. Let b be
the impact parameter and Θ the scattering (deflection) angle between the incoming and
outgoing asymptotes. Because the force is central, the motion is planar and azimuthally
symmetric.

Scattering cross section. The differential cross section dσ/dΩ is defined by

dN

dt
= J

dσ

dΩ
dΩ,

where dN/dt is the rate of particles scattered into the solid angle element dΩ = sinΘ dΘ dϕ
about the direction (Θ, ϕ).

B. Mapping annulus in b to ring in solid angle

The number of incident trajectories with impact parameters between b and b + db that
hit the target per unit time is

dN

dt
= J (2πb db),

since 2πb db is the area of the annulus in impact-parameter space.
Axial symmetry implies that all such trajectories scatter into a ring of polar angles

between Θ and Θ + dΘ, spanning the full azimuth 0 ≤ ϕ < 2π, hence

dΩ = 2π sinΘ dΘ.

Equating the two expressions for dN/dt gives

J (2πb db) = J
dσ

dΩ
(2π sinΘ dΘ),

and therefore the general classical formula for central forces :

dσ

dΩ
=

b

sinΘ

∣∣∣∣ dbdΘ
∣∣∣∣ . (1)

This is purely kinematical; the dynamics enter through the functional relation b 7→ Θ(b)
determined by the force law.
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C. Dynamics: Θ(b) from the trajectory

Energy and angular momentum conservation give

E =
1

2
m(ṙ2 + r2θ̇2) + V (r), L = mr2θ̇ = mv∞b.

Eliminating time,

θ0(b) =

∫ ∞

rmin

Ldr

mr2
√

2(E − V (r))− L2

mr2

, Θ(b) = π − 2θ0(b).

Once Θ(b) is known (or inverted to b(Θ)), insert b(Θ) in (1) to obtain dσ/dΩ.

D. Example: Inverse-square (Rutherford) scattering

For F (r) = −k/r2 (repulsive Coulomb or attractive gravitational with suitable sign con-
ventions), the unbound orbit is a hyperbola,

r(θ) =
p

1 + e cos θ
, p =

L2

mk
, e =

√
1 +

2EL2

mk2
=

√
1 +

m2b2v4∞
k2

.

The asymptote satisfies 1 + e cos θ∞ = 0 ⇒ cos θ∞ = −1/e, and the deflection angle is

Θ = π − 2θ∞ = 2 sin−1
(1
e

)
= 2arctan

( k

mbv2∞

)
.

Inverting, one gets the impact parameter as a function of Θ:

b(Θ) =
k

mv2∞
cot

(Θ
2

)
. (2)

Then
db

dΘ
= − k

2mv2∞
csc2

(Θ
2

)
,

b

sinΘ

∣∣∣∣ dbdΘ
∣∣∣∣ = ( k

2mv2∞

)2 1

sin4(Θ/2)
.

Hence the Rutherford differential cross section:

dσ

dΩ
=

( k

2mv2∞

)2 1

sin4(Θ/2)
. (3)

E. Total vs. partial (integrated) cross sections

Total cross section. By definition,

σtot =

∫
4π

dσ

dΩ
dΩ =

∫ 2π

0

dϕ

∫ π

0

dσ

dΩ
sinΘ dΘ.

For the Rutherford law (3), the integrand behaves at small angles as dσ
dΩ

∼ Θ−4 and

dΩ ∼ Θ dΘ dϕ, so the integral diverges like
∫ Θmin Θ−3 dΘ. Conclusion: the total classical

cross section for a pure 1/r2 force is infrared divergent (it is dominated by arbitrarily
small deflection angles). Physically one introduces a cutoff (screening length, finite beam
size, or minimum resolvable scattering angle).
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Partial cross section above an angle cut. Define the integrated (or partial) cross
section for deflections larger than a fixed angle Θ0 > 0:

σ(Θ ≥ Θ0) =

∫ π

Θ0

∫ 2π

0

dσ

dΩ
sinΘ dϕ dΘ.

Using (2), there is a simple geometric identity:

σ(Θ ≥ Θ0) = π b(Θ0)
2 = π

( k

mv2∞
cot

Θ0

2

)2

.

Equivalently, inserting (3) and integrating,

σ(Θ ≥ Θ0) =

∫ π

Θ0

2π
( k

2mv2∞

)2 sinΘ dΘ

sin4(Θ/2)
= π

( k

mv2∞

)2

cot2
(Θ0

2

)
.

This finite result is what is compared with experiments when a detector has finite angular
resolution or when screening suppresses very small-angle deflections.

F. Finite-range potentials

For short-range central potentials (e.g. hard sphere of radius a, or Yukawa V (r) ∝ e−λr/r),
the small-angle divergence is absent and the total cross section is finite:

σtot =

∫
4π

dσ

dΩ
dΩ < ∞.

As a simple example, for a hard sphere, b ≤ a and σtot = πa2.

G. Summary

• General formula (central forces):
dσ

dΩ
=

b

sinΘ

∣∣∣ db
dΘ

∣∣∣.
• Inverse-square (Rutherford):

dσ

dΩ
=

( k

2mv2∞

)2 1

sin4(Θ/2)
.

• Total cross section for pure 1/r2: diverges ; use an angular cutoff Θ0 or physical

screening. Then σ(Θ ≥ Θ0) = π
( k

mv2∞

)2

cot2
(Θ0

2

)
.

1. Setup

A particle of mass m moves under a central potential V (r) such that V (r) → 0 as r → ∞.
It approaches the scattering center from infinity with speed v∞ and impact parameter b.

2. Constants of motion

E =
1

2
m
(
ṙ 2 + r2θ̇ 2

)
+ V (r), L = mr2θ̇.

At infinity,

E =
1

2
mv2∞, L = mv∞b.
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3. Relation between r and θ

Using energy conservation,

ṙ 2 =
2

m

(
E − V (r)

)
− L2

m2r2
, θ̇ =

L

mr2
.

Hence
dθ

dr
=

L/(mr2)√
2
m

(
E − V (r)

)
− L2

m2r2

,

and the angle from infinity to the point of closest approach rmin is

θ0 =

∫ ∞

rmin

Ldr

mr2
√
2
(
E − V (r)

)
− L2/(mr2)

.

4. Deflection (scattering) angle

Because the trajectory is symmetric,

Θ = π − 2θ0

is the total scattering angle.

5. Inverse–square law F (r) = − k

r2

For this potential, the unbound orbit (e > 1) satisfies

r(θ) =
p

1 + e cos θ
, p =

L2

mk
, e =

√
1 +

2EL2

mk2
.

As r → ∞, 1 + e cos θ∞ = 0 so cos θ∞ = −1/e. Hence

Θ = π − 2θ∞ = 2 sin−1

(
1

e

)
= 2arctan

(
k

mbv2∞

)
.

6. Differential cross section (Rutherford formula)

The impact parameter and scattering angle are related by

b =
k

mv2∞
cot

(
Θ

2

)
.

Thus,

dσ

dΩ
=

b

sinΘ

∣∣∣∣ dbdΘ
∣∣∣∣ = (

k

2mv2∞

)2
1

sin4
(
Θ
2

) .
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7. Summary

Quantity Expression Meaning

Impact parameter b =
L

mv∞
perpendicular offset

Closest distance rmin =
p

1 + e
point of closest approach

Eccentricity e =

√
1 +

b2v4∞m2

k2
orbit shape parameter

Deflection angle Θ = 2 arctan
k

mbv2∞
total deviation

Cross section
dσ

dΩ
=

(
k

2mv2∞

)2
1

sin4(Θ/2)
Rutherford law
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