Differential and Total Scattering Cross Section

1. Basic Idea

When a beam of particles is sent towards a scattering center, each particle moves under
a central force. Some particles go straight (large b), and some are deflected (small b).
Let:
b = impact parameter, © = scattering angle.

A small range b to b + db corresponds to scattering into a small range of angles © to

© +do.

2. Area relation

For the incident beam, particles that have impact parameters between b and b + db fall
within a ring of area

dA = 27bdb.

These particles are scattered into a cone of solid angle
df) = 27 sin © dO.
Since the number of particles scattered must be the same,
(number in annulus) = (number in cone).

Hence,

do )
2bdb = ) (27 sin © dO).

3. Differential scattering cross section

Simplify the above equation:

do b ‘ db
dQ)  sin© 1dOl’
This is the general formula for any central force.

4. Inverse-square (Coulomb or Gravitational) force

For force FF = ——, we know from orbit theory:

o
T?

k
O = 2arct ( )
arctan mbvgo

where
Uso = velocity of particle at infinity.
Now invert this to get b in terms of ©:

b= migo COt(%)'




5. Derive differential cross section

Differentiate b with respect to ©:

db k 9 (@)
de  2mw2 “e\2)
Substitute in the general formula:

ir_ b
dQ  sin©ldoel

After simplification:

d_a_( k )2 1
dQ  \2mv2 /) sin*(©/2)

This is the Rutherford Scattering Formula.

6. Total cross section

The total scattering cross section is the total area that collects all scattered particles:

UtotalZ/;l—ngZ/ 3—?227rsin@d®.
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7 , so the integral diverges at small © (small angles).
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For 1/r* forces, 0 > n'(0/2)
That means the total cross section is infinite.
In real experiments, there is a minimum measurable angle ©y, and we only count
scattering for © > O.

Then,

™

0(© >0 = / Z—gQﬂ'Sin@d@ = ﬂ-(m]:ﬂ )2Cot2<%).
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7. Summary

Quantity Formula
Deflection angle © = 2arctan
mbv2,
d E\2 I
Differential cross section d—; = (vago ) ' (0/2)
E N2 )
Partial cross section (0 > 0g) | 0(© > ©y) = 7r( 5 ) cot? (—0>
muz, 2
Total cross section (ideal 1/r?) Divergent (infinite)

Note: In real experiments, very small angles cannot be measured, so the total cross
section is always finite in practice.



Scattering in a Central Force Field

Differential and Total Scattering Cross Sections (Clas-
sical, Central Force)

A. Kinematics and Definitions

Consider a monoenergetic beam of particles with incident speed v,, and number flux J
(number per unit area per unit time) incident on a scattering center at the origin. Let b be
the impact parameter and © the scattering (deflection) angle between the incoming and
outgoing asymptotes. Because the force is central, the motion is planar and azimuthally
symmetric.

Scattering cross section. The differential cross section do/dS) is defined by

where dN/dt is the rate of particles scattered into the solid angle element d$2 = sin © d© d¢
about the direction (0, ¢).

B. Mapping annulus in b to ring in solid angle

The number of incident trajectories with impact parameters between b and b + db that

hit the target per unit time is
dN

dt
since 2mb db is the area of the annulus in impact-parameter space.

Axial symmetry implies that all such trajectories scatter into a ring of polar angles
between © and © + dO, spanning the full azimuth 0 < ¢ < 27, hence

— J(2mbdb),

dQ) = 27sin© dO.

Equating the two expressions for dN/dt gives
do )
J (2mbdb) = J 0 (27 sin © dO),

and therefore the general classical formula for central forces:

do b

db
aQ sin@‘% ' ()

This is purely kinematical; the dynamics enter through the functional relation b — ©(b)
determined by the force law.



C. Dynamics: O(b) from the trajectory

Energy and angular momentum conservation give
1 A .
E = ém(f“Q +7%0%) + V(r), L = mr®0 = muub.

Eliminating time,

oo Ldr
00(b) = ’ O(b) =1 — 26,(b).
/Tmm mr2\/2(E —V(r) - n]i:?

Once ©O(b) is known (or inverted to b(©)), insert b(O) in (1) to obtain do/dS2.

D. Example: Inverse-square (Rutherford) scattering

For F(r) = —k/r* (repulsive Coulomb or attractive gravitational with suitable sign con-
ventions), the unbound orbit is a hyperbola,
P L? \/ 2E1L? \/ m2b2v,
)= ——— = — =14/1 =4\/14+ ———=.
=T P TV e TR

The asymptote satisfies 1 4+ ecosf,, = 0 = cosf,, = —1/e, and the deflection angle is

1
O =1—20, = 231n‘1<—> = Zarctan<
e

Inverting, one gets the impact parameter as a function of ©:

b(O) = i cot(g). (2)

2
mus, 2

Then

bk csc2<®> b |db _( k >2 1
de  2mu2 2/’ sin® |dO|  \2muvZ /) sin(©/2)

Hence the Rutherford differential cross section:

;Z_SJZ - (27751)30)251114(1@/2)' (3)

E. Total vs. partial (integrated) cross sections

Total cross section. By definition,

do 27 Tdo
Utotzlﬁmdgz/o d¢/0 ESIH@d@.
do

For the Rutherford law (3), the integrand behaves at small angles as 9 ~ ©~* and

dS) ~ ©dO dg, so the integral diverges like femi“ ©-3dO. Conclusion: the total classical
cross section for a pure 1/r% force is infrared divergent (it is dominated by arbitrarily
small deflection angles). Physically one introduces a cutoff (screening length, finite beam
size, or minimum resolvable scattering angle).
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Partial cross section above an angle cut. Define the integrated (or partial) cross
section for deflections larger than a fixed angle ©y > 0:

T p2m do ‘
0(© >0y = o, Esm@dcﬁd@.

Using (2), there is a simple geometric identity:

6 2 09) = mh(0p)* = (
7(© 2 6) = mb(6p)" = 7( —
Equivalently, inserting (3) and integrating,

ﬂ27r< k )2 sin © d© :W( k )200‘52(%).

2muv2, /) sin*(0/2) muv2,

(6 > 6y) :/

Ch)

This finite result is what is compared with experiments when a detector has finite angular
resolution or when screening suppresses very small-angle deflections.

F. Finite-range potentials

For short-range central potentials (e.g. hard sphere of radius a, or Yukawa V' (r) oc e =" /1),
the small-angle divergence is absent and the total cross section is finite:

do

Otot = — df) < 0.
w= [ G

As a simple example, for a hard sphere, b < a and ooy = ma?.

G. Summary

do b ‘db
dQ  sinOldoel

e General formula (central forces):

2 1
e Inverse-square (Rutherford): ;l_g = (anvg) sin(©/2)

e Total cross section for pure 1/r?: diverges; use an angular cutoff ©y or physical

screening. Then o(© > ) = W(m]; )2 cotQ(%).
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1. Setup

A particle of mass m moves under a central potential V' (r) such that V(r) — 0 as r — oc.
It approaches the scattering center from infinity with speed v, and impact parameter b.

2. Constants of motion

E= %m(i’Q + 7’292) + V(r), L = mr?6.

At infinity,
2

1
E = 5MVoo; L = muyb.



3. Relation between r and ¢

Using energy conservation,

2 L? . L
-9 _ _
=L ESVE) - es V=
Hence
do L/(mr?)

RV - =

and the angle from infinity to the point of closest approach 7, is

8y = > Ldr ‘
‘AmmﬂJ%E—vv»—Hmmﬂ>

4. Deflection (scattering) angle

Because the trajectory is symmetric,

[ O=m—20 |
is the total scattering angle.
k
5. Inverse-square law F(r) = ——
r

For this potential, the unbound orbit (e > 1) satisfies

D L? 2F L2
r(6) 1+ ecosf’ P=mk ¢ + mk?
Asr — 00, 1 +ecosbs =050 cosbo, = —1/e. Hence

O=7—20, =2sin! 1 = 2arctan i )
e mbuv2,

6. Differential cross section (Rutherford formula)

The impact parameter and scattering angle are related by

b= i cot 9
ool 2 )

Thus,

do b |db| ([ k \ 1
dQ  sin® [dO|  \2me2, ) sin'(9)’




7. Summary

Eccentricity

Deflection angle

Cross section

b2vt m?
=V T
k

O = 2arctan ———

da_
aQ

(

2
mbuz,

o1
2muv2, ) sin*(©/2)

Quantity Expression Meaning
L :
Impact parameter b= perpendicular offset
mv%
Closest distance Tmin = T+ e point of closest approach

orbit shape parameter

total deviation

Rutherford law




